

M/023/007 Mile tile Copy

8160 South Highland Drive • Sandy, Utah 84093 • (801) 943-4144 • Fax (801) 942-1852

December 1, 2000

Mr. Don Ostler, P.E. Director Utah Division of Water Quality 288 North 1460 West P.O. Box 144870 Salt Lake City, Utah 84114-4870

Ms. Pam Grubaugh-Littig
Utah Division of Oil, Gas and Mining
1594 West North Temple, Suite 1210
P.O. Box 145801
Salt Lake City, Utah 84414-5801

Subject: Post Closure Fluid Management Plan - North Lily Silver City Facility

Dear Mr. Ostler and Ms. Littig:

The final Post Closure Fluid Management Plan for North Lily's Silver City facility is attached for your review.

Thank you for your cooperation in this matter. Please contact the undersigned with any questions you may have.

Sincerely,

Robert J. Bayer Vice President

cc: Dennis Frederick, DWQ (w/attachment)

Fred Pehrson, DWQ Beth Wondimu, DWQ

Mary Ann Wright, Division of Oil Gas and Mining

Wayne Hedburg, Division of Oil Gas and Mining (w/attachment) Stephen Flechner, North Lily Mining Company (w/attachment)

Mike Keller, VanCott Bagley

RECEIVED

DEC 0 1 2000

DIVISION OF OIL, GAS AND MINING

NORTH LILY MINING COMPANY SILVER CITY HEAP LEACH FACILITY POST-CLOSURE FLUID MANAGEMENT PLAN

December 1, 2000

Prepared for:

Utah Division of Water Quality 288 North 1460 West P.O. Box 144870 Salt Lake City, Utah 84114-4870

Prepared by:

JBR Environmental Consultants, Inc. 8160 South Highland Drive Sandy, Utah 84093 (801) 943-4144

NORTH LILY MINING COMPANY SILVER CITY HEAP LEACH FACILITY POST-CLOSURE FLUID MANAGEMENT PLAN

This plan for management of post-closure fluids draining from the heap leach ("heap") at the Silver City Heap Leach Facility ("Facility") has been prepared by JBR Environmental Consultants, Inc. (JBR) at the request of North Lily Mining Company (North Lily). The Facility location is shown on the Location Map, which immediately follows this text.

1.0 INTRODUCTION

1.1 Objective

This plan is intended to describe the proposed design, construction, and operation of a post-closure fluid management for the North Lily Facility. The system would be operated initially with three components: solution storage, using the existing pregnant solution pond and the overflow pond, as necessary; enhanced evaporation using the pregnant solution pond and, if necessary the overflow pond, when weather and temperatures are favorable; and a leachfield for fluid disposal by infiltration. When the pad draindown rate becomes stable and the evaporation system is no longer needed, the leachfield would be used to dispose of all draindown water. Until that as-yet-undetermined time, sufficient evaporation and/or storage capacity to accommodate anticipated draindown fluids without re-application to the heap would be maintained in either the pregnant or overflow pond, or both, as needed.

1.2 Background

This Post-closure Fluid Management Plan (Plan) has been prepared as a follow-up to the Preliminary Draft Plan submitted to the Divisions of Water Quality (DWQ) and Oil Gas and Mining (DOGM) on October 2, 2000. Prior to that time (August 2000) a Conceptual Plan was submitted. That Conceptual Plan provides complete background information not included herein. DWQ has provided comments on the previous two plan submittals. All parties (DWQ, DOGM, and North Lily) have agreed that the leachfield concept is the only viable alternative for fluid disposal at this site. This Plan is intended, with the approval of DWQ and DOGM, to be the final Post-Closure Fluid Management Plan.

2.0 DESIGN CONSIDERATIONS

Preliminary design considerations were listed in the Conceptual Plan. Since preparation of the conceptual plan, percolation tests on the site have been completed and a water quality sample from the pregnant pond inflow has been collected and analyzed, and a contaminant fate and transport analysis had been prepared.

North Lily Mining Company, Silver City Heap Leach Facility Final Draft for Agency Review JBR Environmental Consultants, Inc.

2.1 Percolation Test Results

Five percolation tests (P.T.) were conducted on the site: four to the west and north west of the mill building (P.T.; B, C, D, & E) and one to the south of the heap (P.T.; A). Generalized test pit locations are shown on Sketch 1, Appendix A. The tests were conducted in accordance with testing procedures in UAC R317-5-4. The results of the tests are:

South Test Pit (A)	$8.82 \times 10^{-4} \text{ cm/sec}$
West Test Pit (B)	$1.85 \times 10^{-3} \text{ cm/sec}$
West Test Pit (C)	$4.59 \times 10^{-3} \text{ cm/sec}$
West Test Pit (D)	$4.50 \times 10^{-3} \text{ cm/sec}$
West Test Pit (E)	$1.76 \times 10^{-4} \text{ cm/sec}$

T.P.'s B, C, and D encountered slightly sandy and clayey, calcareous silt with some gravels found in T.P. D. T.P.'s A and E were excavated in calcareous silty clay.

2.2 Water Quality

Water quality data used for this analysis consists of three samples from the pregnant pond inflow, two collected by DWQ, in 1999 and 2000, and one collected by JBR in August 2000. The results of these analyses are shown in Table 1. Laboratory Reports are provided in Appendix A. Pad draindown water quality was fairly consistent among most of the parameters analyzed over the approximately one-year sampling period. Notable is the consistency among the concentrations of several of the indicator parameters and major ions: TDS, chloride, and sodium. Also notable is the variability among nitrate+nitrite, sulfate and copper. The very high concentration of nitrate+nitrite in the April 2000 sample compared with the other two samples suggests that this analysis may be in error. Of the parameters shown in Table 1, Utah Ground Water Quality Standards have been established for 14 of them. Of those 14, the standards were exceeded in one or more of the samples for 11 parameters: cyanide, fluoride, nitrite, nitrate+nitrite, copper, arsenic, cadmium, mercury, lead, selenium, and silver.

2.3 Fate and Transport Considerations

Based upon JBR's experience in closure and ground water impact assessment projects in Utah and elsewhere, site conditions suggest the potential for success of draindown fluid disposal in a leachfield without an adverse effect on ground water quality. The relatively great depth to ground water and characteristics of the materials that comprise the unsaturated zone are the key

factors that favor this disposal alternative. A contaminant fate and transport assessment is presented in Section 4.0, below.

2.4 System Sizing

The two primary factors to be considered in system selection and sizing are the volume and flow rate of water to be handled and the water handling capacity of the system.

2.4.1 Leach Pad Draindown Rate

Although the precise range for the flow rate for post-closure pad draindown cannot yet be determined, an estimate based upon the pad draindown rate that has been measured since solution re-application to the heap was stopped can be made. The flume-measured draindown rate had decreased to less than 15 gpm by September 5 and to less than 10 gpm by September 20. From September 20 to November 20, the draindown rate has been less than 10 gpm and steadily declining until the recent snowmelt caused a slight increase in draindown rate, but still less than 10 gpm. It is reasonable to presume that this draindown rate would not be exceeded after vegetation is established on the heap surface. In the interim, the pad is susceptible to an increased draindown rate resulting from the effects of infiltration of direct precipitation. The increase in draindown rate that may result from these effects cannot be accurately estimated. Nevertheless, several differences will or may contribute to a reduced draindown rate in the upcoming winter season over the last one: the solution inventory has been reduced due to the cessation of fluid application to the pad and the enhanced evaporation program conducted off of the leach pad during the past months; pad regrading scheduled to begin during the week of November 27, will cause sheet wash to exit the pad area rather than being conducted to the pad margin collection trenches and then to the pregnant pond; surface ripping and mulching with composted cow manure will increase the moisture retention capability of the upper approximately one foot of the pad surface. As a result, it reasonable to assume that the pregnant solution pond, possibly with the aid of the overflow pond, will have the capacity to store all fluids not disposed in the leachfield until the spring evaporation season begins.

2.4.2 Leachfield Infiltration Capacity

In accordance with the preceding discussion, the leachfield would be constructed to dispose of 10 gpm of draindown fluid using relatively conservative design assumptions. Although four percolation tests have been conducted in the area, further tests may be necessary to obtain a level of comfort with the consistency of permeability in the area. The available area for leachfield installation in the area of the more permeable soil west and northwest of the mill building is relatively small, perhaps four to five acres; however, the percolation test data indicate that adequate space for construction of the leachfield exists in this area.

3.0 SYSTEM DESIGN

The system design is submitted as a final draft for DWQ review. The design requirements set forth in UAC R317-5 have been followed in preparing the proposed design. The exact location and layout of the leachfield will be adjusted based on further information on percolation rates and fitted to the site topography.

3.1 Design Overview

The flow sheet for the proposed fluid disposal system is shown in Appendix A. The upper flow sheet shows the current fluid flow and lower shows the fluid flow in the proposed system. The latter flow sheet is labeled "interim system." This is because the proposed leachfield and related components have been designed to operate concurrently with the enhanced evaporation system or with the pregnant and overflow ponds in use for fluid storage. Since the pregnant pond will be in place when leachfield operation begins, an in-pond sump, to be located in the northwest corner of the pond is proposed. When the pregnant pond is no longer needed and the draindown rate of the leach pad can be more precisely estimated, the pump system would be eliminated and a distribution box would control the draindown flow. One distribution box would be located at the leachfield and a second distribution box would be located at the leach pad margin and connected to the now buried solution collection pipeline so as to collect all draindown water that flows in the covered channels. This distribution box would be located at a point on the pad margin where the elevation difference between boxes would enable gravity flow to the leachfield at an overall gradient of at least one percent. Until that time, the sump pump will enable the discharge flow rate to be adjusted to meet system capacity.

3.2 Pump and Pipeline

The in-pond sump pump will be located in the northwest corner of the pregnant pond where sediment build-up is minimal and electrical power is easily accessed. The sump pump will pump fluid from the pregnant pond via a polyethylene pipeline to the distribution box for the leach field. The sump pump would be sized to pump the maximum estimated fluid flow and would have an adjustable pump rate. The schematic design for the sump and sump pump shown in Sketch 2 in Appendix A shows the key components: a submersible pump suspended approximately one foot above sump bottom; a polyethylene cylindrical sump with an over-sized bottom plate to enable weighting of the sump in the pond; perforations in the sump wall to allow water to enter; and a motor, discharge line, and controls (float switch and pressure relief valve). The sump pump would operate continuously except when low water level resulted in automatic shut-off by the float valve: A pressure relief valve would divert fluid flow from the discharge line back into the pregnant pond when excess pressure in the distribution box dictates. The unburied section of the discharge pipeline would be insulated or heat-traced to prevent freezing. The buried section of the pipeline would be placed below freeze depth for the entire length. The pipeline would be four-inch HDPE.

3.3 Distribution Boxes

Currently, pre-manufactured septic tanks, which would serve as equalizing basins when the system becomes gravity-fed, are proposed to serve as flow-control distribution and sediment containment boxes at both the pad margin and the inlet to the leachfield. Distribution boxes at both the pad margin and leachfield inlet will provide sediment collection and clean-out points at both ends of the pipeline carrying draindown fluid from the pad margin to the leachfield.

3.4 Leachfield

3.4.1 Leachfield Infiltration Area

The size of the leachfield will be finalized following further test pit excavation and, if necessary, additional percolation tests for the purpose of determining the lateral extent of the more permeable soils found in Test Pits C and D. Table 5, shows the range of general size requirements for the leachfield if it were installed in materials with the average permeability of Test Pits C and D (Zone 1), Test Pit B (Zone 2), Test Pit E (Zone 3). If, as is likely to be the case, the leachfield cannot be installed completely in Zone 1, the infiltration area will be appropriately adjusted to enable a minimum infiltration capacity of 10 gpm. Based on the distribution of the percolation tests, it is probable that the leachfield would be constructed in soils with a mixture of the characteristics of Zones 1 and 2; therefore, per Table 5, the infiltration area would be between 8,800 and 20,000 square feet.

3.4.2 Leachfield Construction Specifications

The leachfield would be constructed in tiers, owing to the slope of the ground surface at the proposed location. Each tier would be constructed so as to be level, with a minimum of two parallel infiltration ditches per tier. Following the guidance in UAC R317-5, the following general specifications will apply: leachfield piping would be four-inch HDPE; perforated laterals would not exceed 100 feet in length; distribution pipes would be solid HDPE; all pipes will be installed level; drop boxes, consisting of a vertically placed HDPE pipe with a solid bottom, would be installed to conduct fluid between levels; these drop boxes would serve as cleanouts; infiltration ditches would be bedded with washed gravel of appropriate size and the pipes would be covered by two inches of gravel; filter fabric would be placed on top of the gravel to prevent fines from entering the gravel blanket during and after backfilling; six inches of loose backfill would be hand-placed prior to machine backfilling and the backfill would not be machine-compacted,

December 1, 2000

Ditches would be constructed 40 inches wide with wall-to-wall spacing between ditches of 8 feet. The 40 inch width exceeds the maximum 36-inch trench width called for in UAC R317-5; however, the 40-inch trench width accommodates the backhoe bucket available to the chosen construction contractor. The trench spacing has been increased from the 7.5-foot requirement in UAC R317-5 for 36-inch-wide trenches to 8 feet to accommodate the slightly wider trench.

The leachfield would be sited based on surveyed local topography and percolation rate data. The distribution box location and trenches for distribution pipes will be staked on center. Locations of trenches for perforated laterals would be set during construction to ensure that the 8-foot intertrench distance can be maintained. The DWQ will be consulted after surveying and staking is complete, but before construction begins to obtain approval for the final system size and layout.

4.0 CONTAMINANT FATE AND TRANSPORT ASSESSMENT

The Silver City Facility is located in the Tintic Valley immediately adjacent to the Sevier Desert that lies to the southwest. Together the Sevier Desert and the much smaller Tintic Valley comprise a closed basin (the Sevier Desert Basin) thousands of square miles in area. The Tintic Valley is hydraulically connected to the Sevier Desert both through surface and ground water flow. Tanner Creek, whose intermittent headwaters form approximately five miles to the south-southwest of the project area, carries surface water flow from the Tintic Valley in a southerly direction to the Sevier Desert. Ground water flows in the same direction and enters the Sevier Desert at Tanner Creek Narrows, approximately 17 miles south-southwest of the project site (Mower and Feltis, 1968).

As discussed previously, analyses of heap leach pad draindown fluids over the last year to eighteen months revealed concentrations in excess of Utah Ground Water Quality Standards for 11 parameters, as well as elevated concentrations of chloride, sodium, sulfate, and TDS. Site conditions at the Silver City facility, namely depth to ground water and unconsolidated sediment (soil) characteristics, are highly favorable for disposal of residual, heap leach draindown fluids via a leachfield.

4.1 Background and Data Sources

Fluids that leave the leachfield and reach the underlying water table aquifer through recharge have the potential to affect aquifer water quality. Factors that have mitigative effects on such potential impacts include attenuation in both the unsaturated zone and the aquifer and advection, diffusion, and mixing. In order to assess the influence of these factors, the following data were gathered and compiled: depth to ground water (and unsaturated zone thickness) and lithologic information, such as was available, for the materials in the unsaturated zone from drillers' or geologic logs for 10 water wells or test borings in the general project vicinity; background water quality from the site water supply and monitor well, the former compliance point under the

previous ground water discharge permit; aquifer characteristic and recharge data for the Sevier Desert basin (Mower and Feltis, 1968); and water quality data for draindown fluid from analyses performed by state-certified laboratories on behalf of JBR and DWQ.

4.2 Assessment Methods

In the absence of sufficient aquifer data for computer modeling, assessment of the impacts to aquifer water quality by the leachfield effluent in consideration of the effects of advection, diffusion and mechanical mixing has been done by application of a simplistic mixing model. The intent of this model was to conservatively estimate the concentrations of contaminants in the aquifer in the vicinity of the former downgradient monitor well (MW-1) as the result of leachfield operation. This was done by calculating the concentration of contaminants in a volume of water equal to the estimated annual recharge that would influence water quality at MW-1 after receiving the entire volume of leachfield effluent with no reduction in contaminant concentrations. Background concentrations of dissolved constituents in the recharge water were assumed to be the average of those reported in MW-1 water quality analyses. Calculating the resultant concentrations of contaminant ions after mixing the locally derived annual aquifer recharge volume with the entire volume of annual leachfield effluent discharge (at 10 gpm) is a simplistic, but conservative means of assessing the effects of advection, dispersion, and mechanical mixing in the aquifer itself.

The advection/dispersion/dispersion/mixing assessment was conducted by first compiling the following information: a small immediate recharge area, defined as the small immediate watershed area (SIWS, as shown on the Location Map) in which the proposed leachfield is located, was identified and its area measured; a second larger watershed area adjacent to the SIWS on the north, the Mammoth Gulch watershed (MGWS), was also measured; the combined watershed areas were assumed to be the area of recharge influencing water quality at MW-1; average annual rainfall data for two nearby locations, Little Sahara Sand Dunes and Eureka were compiled (Western Regional Climate Center, 2000); and, annual recharge rates were obtained from Mower and Feltis, (1968) for the recharge area of the Sevier Desert basin.

The mass-balance, mixing evaluation itself was conducted in the following manner:

- ⇒ annual draindown fluid volume to the leachfield was multiplied by the average concentrations of the individual dissolved constituents (from three water quality analyses of 1999 and 2000 samples) to obtain the mass of each contaminant released annually from the leachfield;
- ⇒ estimation of the background concentration of each contaminant, determined using water quality data from the compliance well, MW-1;
- ⇒ annual recharge volume for the recharge area less the pad area multiplied by the background concentration of each contaminant to estimate the mass of each contaminant contributed to the aquifer each year by natural recharge;

⇒ dividing the sum of the two mass concentration values for each contaminant by the sum of draindown fluid volume released to the leachfield and the recharge volume to obtain the estimated concentration of each contaminant in the annual recharge contributed to the water table aquifer in the Tintic Valley as the result of the combined contribution of normal aquifer recharge and the discharge from the leachfield.

This part of the assessment was conducted under two scenarios: using only the recharge from the SIWS and using the combined recharge from both the SIWS and MGWS.

Geochemical behavior of contaminants in the unsaturated zone has been estimated and/or predicted using the available lithologic information and commonly accepted principles that control and affect attenuation of dissolved constituents in soils and other geologic materials. Sufficient data does not exist to provide a quantitative assessment of the effects of attenuation on effluent chemistry; however, attenuation has been evaluated from a qualitative standpoint

4.3 Assessment Results

4.3.1 Depth to Ground Water and Geologic Characteristics of the Unsaturated Zone

Drillers' or geologic logs were obtained from the files of the Utah Division of Water Resources over its Internet website and from the files of the DWQ. Copies of these logs are provided in Appendix B. These wells range in distance from the Facility from approximately 0.5 to 4.0 miles. Information on the relative clay content logged in each well or boring and the depth to ground water reported on each log has been compiled and is presented in Table 2. Depth to ground water in the 10 wells ranges from 8 to 440 feet. The depth to the water table was 440 and 330 feet in the two wells closest to the Facility. Based upon limited data on the well logs and the work of Mower and Feltis, (1968), the aquifer in the project vicinity is believed to be unconfined.

The Statement of Basis for Permit No. UT-UGW230001 described the ground water depth in the site vicinity to be 474 feet or greater. The disparities in water depth between that reported on the well logs (Appendix B) and the Statement of Basis can be attributed to fluctuations of water level overtime, since water depths were measured at different times. Lake bed and alluvial deposits were reported to be 325 feet thick in a test hole drilled at the southwest corner of the leach pad, again according to the Statement of Basis. These sediments were described as sand, silt, gravel, and clay with "several beds of clay in the test hole ... 25 to 30 feet thick." Although efforts were made to obtain the log of this well, no log has been located. The unconsolidated material in the closest wells to the Facility, 27-A, 27B, 26-A, and MW-1 (Table 2), have relatively low clay contents. Nevertheless, the statements regarding the presence of clay in the borehole adjacent to the pad in the Statement of Basis has been presumed to be correct for the purposes of this assessment.

4.3.2 Effects of Mixing Draindown Fluid with Natural Waters during Recharge

The average concentration of the various dissolved constituents from water quality samples from three water wells in the project vicinity (Table 3) was assumed to represent the water quality of the volume of water derived annually from the recharge area expected to affect water quality in MW-1. Six scenarios for precipitation and recharge area were selected. They were created using three precipitation data alternatives: Eureka, Little Sahara, and the average for Eureka and Little Sahara. For each precipitation value, two separate annual recharge volumes were calculated, one for the SIWS alone and one for the combined SIWS and MGWS recharge areas. Table 4, Results of Mass-Balance/Mixing Modeling shows the average background and leach pad draindown water quality, the recharge volume for each of the six recharge scenarios, and the predicted concentration of each parameter for each scenario. Appendix C contains a two-page table entitled "Inputs and Results of Mass-Balance/Mixing Modeling" which summarizes the derivation of the modeling results. Concentration results for the Little Sahara precipitation value are shown for each recharge scenario because they are needed to calculate the average precipitation scenario. The Little Sahara station is considered to provide an unrealistic recharge scenario; it is included in the table only for comparative purposes.

The data in Table 4 shows that the estimated concentrations of most contaminants are below Utah Ground Water Quality Standards. Of the 11 parameters for which exceedences of standards have been noted in the draindown fluid, the number of aquifer water quality exceedences predicted for each of the four relevant recharge scenarios ranges from 7 of 11 parameters (SIWS recharge volume from the average of Little Sahara and Eureka precipitation) to 2 of 11 parameters (combined SIWS and MGWS recharge and Eureka precipitation). The combined SIWS and MGWS recharge volumes based on the average precipitation depth is considered the most realistic recharge – precipitation scenario. In this case, the predicted concentrations of arsenic, lead, and WAD cyanide would exceed the Utah Ground Water Quality Standards; however, the predicted concentrations of WAD cyanide and lead, 0.26 mg/l and 0.02 mg/l are only slightly above the standards. In addition, the estimated lead concentration is essentially equal to the background value. When the effects of attenuation in the unsaturated zone, discussed in the next section, are considered, it is very unlikely that water quality impacts resulting from leachfield operation will be measurable in MW-1.

4.3.3 Contaminant Attenuation in the Unsaturated Zone

As stated previously, of the fourteen dissolved components of the draindown fluid for which Utah Ground Water Quality Standards have been established, eleven of these standards have been exceeded in one or more of the three samples of the draindown fluid collected since 1999 (Table 1). These parameters are cyanide, fluoride, nitrite, nitrate+nitrite, copper, cadmium, arsenic, mercury, lead, selenium, and silver.

Attenuation of contaminants in waters infiltrating unsaturated media is controlled by a number of geochemical mechanisms including the following: chemical precipitation as the result of changes in solution equilibria, co-precipitation of trace elements with amorphous iron or manganese oxides, adsorption onto iron and manganese oxide surface coatings, and adsorption onto charged clay particle surfaces. Formation of ionic complexes in solution would often be an intermediate step preceding attenuation. Major ions analyzed in the leach pad draindown fluid are chloride, sulfate, and sodium. Iron, although not analyzed, is probably also present in high concentrations as evidenced by the high dissolved sulfate content in the draindown fluid and the reported refractory (sulfidic) nature of much of the ore placed on the pad. These ions are present in high concentrations because the leach pad fluids and the leach pad material itself have been somewhat in a state of chemical equilibrium. As the draindown fluids are passed through the leachfield and infiltrate into the underlying sediments, equilibrium conditions will change, the fluid will be over-saturated with respect to these ions and precipitation of various mineral salts would be expected to occur in the interstices of the sediments. The reduction in concentrations of these major ions cannot be estimated quantitatively with the available data; however, a significant reduction in these concentrations would predictably occur.

Most of the ions with concentrations in excess of Utah Ground Water Quality Standards are present in minor or trace concentrations. Co-precipitation with iron oxides as particle coatings is well known as a major controlling factor in removal of arsenic, cadmium, copper, and lead from solution. Iron oxide coatings tend to form as particle coatings and when clay and colloidal-sized particles are abundant, the potential surface area per unit volume (surface to volume ratio) for formation of iron oxide coatings in the receiving medium is maximized. Given the clayey and silty nature of the receiving medium (unsaturated zone sediments) at North Lily, this attenuation mechanism is anticipated to be highly effective. In fact surface areas of from 200 to 300 m²/g in sediments have been estimated (Horowitz, 1985). These iron and manganese oxide coatings are highly charged (Strum and Morgan, 1981); therefore adsorption onto the charged surfaces of iron and manganese oxides is not only a highly effective means of attenuation of metals (Elder, 1988, Jenne, 1968), but almost certain to occur (Elder, 1988). The most favorable conditions for formation of iron and manganese oxide coatings are oxidizing, alkaline conditions like those anticipated in the proposed receiving medium at the Facility.

Silver would be anticipated to attenuate not only through precipitation onto charge iron oxide surfaces, but also by way of direct precipitation of silver chloride compounds. In alkaline, non-reducing conditions, dissolved silver is likely to occur as ionic complexes such as $AgCl_2$ or Na $(AgCl_2)^0$ (Brookins, 1988 and Rose, Hawkes, and Webb, 1979). The elevated chloride concentration in the draindown fluid will tend to result in precipitation of silver chloride salts as the solutions re-equilibrate with the materials in the receiving medium (Hem, 1985).

Mercury attenuation is known to occur by way of sorption onto charge manganese and iron oxide surfaces (Elder, 1988), through volatilization and retention in air-filled pore space or, given the

high chloride content and alkalinity of the draindown fluid, through precipitation at mercury-chloride salts (Hem, 1985).

Reduction of oxidized forms of selenium (such as selenate or selenite) to more reduced forms such as native selenium or selenide is the only known natural chemical process that provides for significant selenium attenuation in the environment. Although reduction of selenite occurs relatively readily, the free energy required to reduce selenate is difficult to achieve in all but the most intensely reducing environments (Herring, 1990). Selenium species present in the Facility draindown fluid are likely to be selenate or selenite. Chemically reducing conditions are not likely to exist in the subsurface beneath the leachfield; therefore, attenuation mechanisms cannot be counted on to reduce selenium concentrations in infiltrating draindown fluid beneath the proposed leachfield.

Both fluoride and calcium concentrations in the draindown fluid are elevated above local background conditions (see section 4.3.3, below for summary of background water quality from area water wells). Fluoride concentration in natural waters is controlled by the solubility of the mineral fluorite (CaF₂) and ion exchange with some clay minerals. In general, elevated fluoride concentrations would be expected in waters with low calcium concentration (Hem, 1985). The relatively high concentrations of both fluoride and calcium in the draindown fluid indicate that other dissolved ions are probably affecting fluorite solubility. Changes in solution chemistry during recharge may result in reduction of fluoride concentration through precipitation of fluorite; however, the level analysis performed in this assessment cannot support such a conclusion.

Attenuation of WAD (weak acid dissociable) cyanide in soils can occur as a result of adsorption, volatilization, precipitation of cyanide complexes, or a combination of these mechanisms. The presence of clay in the receiving medium is expected to provide for significant attenuation of WAD cyanide; however, a quantitative estimate of the effect of attenuation on cyanide cannot be made with the available data.

Nitrate and nitrite attenuation in the unsaturated zone is also anticipated to be effective in reducing the concentration of these ions. Results of attenuation studies performed in anticipation of draindown fluid disposal in a leachfield at the former USMX Goldstrike Mine in Washington County, Utah provide some useful information in assessing the potential for nitrate attenuation at the Facility. At Goldstrike, a leachfield was designed to be installed on the surface of a wasterock-filled open pit; fill thickness was estimated at 150-feet and consisted of a mixture of limestone, shale, volcanic rock and clay. The results of the attenuation study showed that the waste rock fill had sufficient attenuative capacity over a 20-year period to reduce concentrations of nitrate from draindown from two heaps with nitrate concentrations of 79 and 188 mg/l to less than 10 mg/l. The waste rock types in the Goldstrike backfill are likely to have similar overall mineralogies to the sediments in the proposed receiving medium at the Facility (see Appendix

B). (Note also that JBR has performed work at both properties, is familiar with site conditions at each locality as well as with the local and regional geology; therefore, JBR is confident in making the preceding statement.) Nitrate + nitrite concentrations in the Facility draindown fluid were reported to be 145 mg/l in the August 2000 sample collected by JBR. The thickness of the unsaturated zone at the Facility is twice that of the Goldstrike fill and undoubtedly has a lower permeability (native, undisturbed soil/sediment versus end-dumped, coarse backfill). Accordingly, it is reasonable to anticipate that attenuation of nitrate in the unsaturated zone at the Facility will be effective in reducing nitrate concentrations in the infiltrating draindown fluid.

4.3.4 Conclusion

The foregoing discussion of the qualitative effects of attenuation combined with the effects of advection, diffusion, and mechanical mixing in the aquifer described in section 4.3.2 demonstrate that operation of the proposed leachfield will result in a *de minimus* impact on water quality.

5.0 REFERENCES

Jenne, E. A., 1968. Controls on Mn, Fe, Co, Ni, Cu, and Zn concentrations in soils and water; the significant role of hydrous Mn and Fe oxides, in, Trace Inorganics in Water: Advances in Chemistry Series, no. 73, Washington. D.C. American Chemical Society.

Hem, J. D., 1985. Study and Interpretation of the Chemical Characteristics of Natural Waters. USGS Water Supply Paper 2254.

Mower, R. W. and Feltis, R. D., 1968. Ground-Water Hydrology of the Sevier Desert, Utah. USGS Water Supply Paper, 1854.

Rose, A. W., Hawkes, H. E., and Webb, J. S., 1979. *Geochemistry in Mineral Exploration*. Academic Press.

Western Regional Climate Center, 2000. www.wrec.dri.edu/summary/climsmut.html. Desert

FIGURE 1 Location Map

Table 1. Water Quality Summary - Leach Pad Draindown Fluid

North Lily Mining Company Silver City Facility

Date	??-99	Apr-00	Aug-00	Utah Ground Water Quality
	DWO	DWQ	JBR	Standard
Sampled by	DWQ	DWQ	JDN	Staridard
Parameter		0.7	0.1	6.5 - 8.5
PH	9.1	8.7	8.1	
Conductance (umhos/cm)	23,000	22,000	23,300	
TDS (mg/l)	19,510	18,358	20,000	NS
Alkalinity as Bicarbonate (mg/l)	364	248	388	
Total Hardness (mg/l)	1,409.8	1,296.4	NA	NS
Chloride (mg/l)	2,125	2,025	2,220	
Cyanide, Amenable to Cl ₂ (mg/l)	20.865	34.87	18.80	
Cyanide, Total (mg/l)	20.9	35	19	
Cyanide, WAD (mg/l)	NA	NA	14.400	
Fluoride	NA	NA	6.700	
Nitrite, Nitrogen mg/l)	NA	NA	51.000	
Nitrate + Nitrite Total (mg/l)	124	2,110	145	10.0
Sulfate (mg/l)	11,000		10,200	
Barium (mg/l)	0.015	ND	0.010	
Calcium (mg/l)	539	481	350	
Chromium (mg/l)	0.009		ND	
Copper (mg/l)	5.70			
Magnesium (mg/l)	15.8			
Manganese (mg/l)	0.130		NA	
Potassium (mg/l)	297	293		
Sodium (mg/l)	5,570			
Zinc (mg/l)	0.091	ND	0.420	Hartho II II I I I I I I I I I I I I I I I I
Arsenic (mg/l)	0.900			
Cadmium (mg/l)	ND			CONTRACTOR STREET
Mercury (mg/l)	NA			
Lead (mg/l)	0.076	Contribution of the party of th		
Selenium (mg/l)	0.200	The second of th	The second state of the second	
Silver (mg/l)	0.370	0.029	0.315	0.10

NA = "Not Analyzed" ND = "Not Detected" NS = "No Standard"

Table 2

	7	R	ø	
-	u	P.	20	
gee	***	800	80	
).w	883	80	8	
See		900	æ	
		Г	ø	
88		٠.	æ	
	200			
	•	В	×	
8	~	8		
990			8	
366				
-	700	ø	w	
.	.00	006		
-	•		×	
₩		88	8	
330	gge	m		
***	4	ы	×	
333	c	L		
88	8	8	8	
886	900	W		
	•	Ы	×	
	N	9		
8.	722	8		
24	80	8		
8	g.	d		
m	***	m		
1	ø	8		
33:0		ø		
8.	*	ı.		
	ye.	8		
		ы		
300		a		
ça.	w	880		
m	100	æ		
	-			
	200	*		
888.	8			
886	0000	***		
	ш	ш		
	Q.	×		
	ě.			
88				
		ú		
š		4		
5	*			
	1	í		
K	1	3		
	1	5		
7	1	3		
-	1	/ 		
	1	3		
	1	2		
	1			
		/ 		
Hadamia.		(3-)		
A A CALL				
RACALLI				
BACACUE		ノコーシュニー		
C RACACO				
C. R. A. A		/ 3 - 3 - 3 - 3 - -		
L. C. B. R. C. L.				
- C BR-4		(S)		
L. B. B. A. C. L.				
C. C. B. H. C. L.		23 - 33 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3		
Land Bank		23 - 33 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3		
Washington To Manager				
Of all Blacks with				
Of at Backamia				
è				
è				
è				
è				
è				
è				
è				
è				
Inches of an all admin				
è				
10.5				
10.5				
10.5				
10.5)	
10.5)	
10.5)	
10.5)	
10)	
10)	
10)	
10)	
10				
10)	
10)	
10)	
10				
10 . and in a)	
10 . and in a				
10.5				
10 . and in a				
10 . and in a				
10 . and in a)	
10 . and in a)	
10 . and in a)	
10 . and in a				
10 . and in a				

			Secretary of the second se							
Location of Well	NE Cor. Sec. 21	NE Cor. Sec. 21	No. 1/4 of Sec. 13	No. 1/4 of Sec. 13	S. 1/4 of Sec. 13	S. 1/4 of Sec. 13	SE 1/4 of Sec 27	SE 1/4 of Sec 27	SE 1/4 of Sec 26	NW 1/4 of Sec 35
Well Number	21-A	21-B	13-A	13-B	13-C	13-D	27-A	27-B	26-A	MW-1
Distance from Project Site to Well Location	SW 4.0 Miles	SW 4.0 Miles	SSE 2.5 Miles	SSE 2.5 Miles	SSE 3.0 Miles	SSE 3.0 Miles	NW 1.6 Miles	NW 1.6 Miles	NNW 0.5 Miles	WNW 0.75 Miles
Total Depth	605.00	580.00	627.00	512.00	780.00	630.00	610,00	795.00	595.00	528.00
Depth to Water	8.00	23.00	263.00	131.00	33.00	264.00	281.00	274.00	440.00	330.00
Soil	1%	%0	0%	%0	%0	%0	%0	%0	%0	%0
Clay	46%	40%	20%	30%	18%	20%	7%	19%	%0	%0
Clay/Sand	1%	38%	0%0	%0	%0	%0	%0	%0	%0	%9
Clay/Gravel	17%	%6	69%	21%	26%	%69	%0	2%	%0	%0
Clay/Sand/Gravel	13%	13%	0%0	%0	14%	%0	%0	%0	3%	10%
Material w/No Clay	9%6	0%	11%	13%	12%	11%	%86	%92	27%	%0
Clay w/ Shale	7%	%0	0%0	%0	%0	%0	%0	%0	%0	%0
Silt	9%	%0	0%0	%0	0%	%0	%0	%0	20%	84%
Total Clay-bearing Material	%06	100%	89%	87%	%88	%68	%2	24%	3%	16%
Total Non Clay-bearing Materials	10%	%0	11%	13%	12%	11%	93%	76%	97%	84%

All wells are located in T. 11 S., R. 3 W. except Wells 2-C and MW-1 which are in T. 10 S., R. 3 Š

Ground W				o. Lily Heap Leach I		
Sampler	Units	EMS Company	No. Lily Mining	ESA Consultants	Average	Units
Well Number (Date)		Well Storage	Well Storage	scsw		}
Weil Mulliper (Date)		Inlet	Inlet			
Date		9/9/96	??/99	11/9/99		
Alkalinity, as Bicarbonate	mg/L	138	129	133	133	mg/L
Alkalinity, as Carbonate	mg/L	1	1	1	1	mg/L
Aluminum	mg/L	0	0	0	0	mg/L
Arsenic	mg/L	0.005	0.005	0.005	0.005	mg/L
Barium	mg/L	0.07	0.054	0.069	0.064	mg/L
Cadmium	mg/L	0.005	0.001	0.001	0.002	mg/L
Calcium	mg/L	72.8	51.7	52	58.8	mg/L
Carbon Dioxide	mg/L	0	0	0	0	mg/L
Chloride	mg/L	148	139	136	141	mg/L
Chromium	mg/L	0.005	0.005	0.005	0.005	mg/L
Conductance	umhos/cm	983	950	652	862	umhos/cr
Copper	mg/L	0.01	0.01	0.01	0.01	mg/L
Cyanide Total	mg/L	0.002	0.002	0.002	0.002	mg/L
Fluoride	mg/L	0.2	0.2	0.2	0.2	mg/L
Hydroxide	mg/L	1.0	0	0	0.3	mg/L
Iron	mg/L	0.34	0.3	0	0.21	mg/L
Lead	mg/L	0.04	0.005	0.005	0.017	mg/L
Magnesium	mg/L	37.6	30.3	28	32.0	mg/L
Manganese	mg/L	0.01	0.02	0	0.01	mg/L
Mercury	mg/L	0.0002	0.0002	0.0002	0.0002	mg/L
Nitrite, Nitrogen	mg/L	0.005	0.005	0.005	0.005	mg/L
Nitrate+Nitrite-Total	mg/L	1.18	0.86	1.2	1.08	mg/L
pH	Units	7	7.6	7.56	7.39	Units
Potassium	mg/L	4	3.2	2.9	3.4	mg/L
Selenium	mg/L	0.002	0.005	0.002	0.003	mg/L
Silver	mg/L	0.005	0.05	0.0006	0.0185	mg/L
Sodium	mg/L	61.5	53.8	56	57.1	mg/L
Sulfate	mg/L	103	87	89	93	mg/L
Total Desolved Solids	mg/L	576	476	532	528	mg/L
Total Suspended Solids	mg/L	3	3	0	2	mg/L
Zinc	mg/L	0.14	0.04	0.02	0.07	mg/L

Average Average Average Concentration Average Concentration Conc				Results of	Mass-Bal	Results of Mass-Balance/ Mixing Modeling	odeling				
Concentration Concentration Little Sahara (0.53)						Portion	of Annual Pro	ecipitation to Recha	rge (after Mov	wer, 1968)	
Pecharge Water Lieary Light Lilers Liler		Assumed Concentration in	Average Concentration in	;	Units	Eureka (C	1.92')	Little Sahara	(0.53')	Average (0.73')	.73')
133.00 277.75 mg/L mg/L 135.54 151.97 137.40 168.93 1.68E+08 1.33.00 1.48E+08 mg/L mg/L 1.00		Recharge Water (from Table 3)	Leach Pad Effluent (from	Units		MGWS + SWIS	SMIS	MGWS + SWIS	SMS	MGWS + SWIS	SMS
133.00 277.75 mg/L mg/L 135.54 151.97 173.40 165.53 mg/L mg/L 1.00 0.		,	Appendix C)		Liters	1.89E+09	2.91E+08	1.09E+09	1.68E+08	1.49E+09	2.30E+08
133.00 277.75 mg/L mg/							Concer	ntrations of each P	arameter		
1 0 mg/L mg/L 100 1 100 1 0.06 0.06 mg/L mg/L 0.06 0.06 0.00 0.00 0.064 0.066 19.36 mg/L mg/L 0.06 0.06 0.07 0.07 0.064 0.056 mg/L mg/L 0.06 0.06 0.07 0.07 0.082 474.0 mg/L mg/L 0.07 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 414 2.220 mg/L 0.07 0.07 0.01 0.00 0.04 2.220 mg/L 0.07 0.07 0.01 0.00 0.05 0.05 0.07 0.07 0.01 0.00 0.00 0.06 0.07 0.07 0.07 0.07 0.01 0.00 0.07 0.07 0.07 0.07 0.03 0.03 0.03 <td>Alkalinity, as Bicarbonate</td> <td>133.00</td> <td>277.75</td> <td>mg/L</td> <td>mg/L</td> <td>135.54</td> <td>151.97</td> <td>137.40</td> <td>165.93</td> <td>136.22</td> <td>157.07</td>	Alkalinity, as Bicarbonate	133.00	277.75	mg/L	mg/L	135.54	151.97	137.40	165.93	136.22	157.07
0.00 0.00 <th< td=""><td>Alkalinity, as Carbonate</td><td>-</td><td>0</td><td>mg/L</td><td>mg/L</td><td>1.00</td><td>-</td><td>1.00</td><td>-</td><td>1.00</td><td>1</td></th<>	Alkalinity, as Carbonate	-	0	mg/L	mg/L	1.00	-	1.00	-	1.00	1
0.00b 19.36 mg/L mg/L 0.08 0.36 2.30 0.002 0.004 0.066 0.07 0.07 0.071 6.6.8 474.0 mg/L mg/L 0.00 0.00 0.00 0.00 6.6.8 474.0 mg/L mg/L 0.00 0.00 0.00 0.00 6.6.8 474.0 mg/L mg/L 0.00 0.00 0.00 0.00 1.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1.0 0.00 0.00 0.00 0.00 0.00 0.01 1.0 0.00 0.00 0.00 0.00 0.00 0.02 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.01 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02	Aluminum	0.0	0.0	mg/L	mg/L	0.00	0.0	0.00	0.0	0.00	0.0
0.004 0.006 0.006 0.07 0.071 0.004 0.005 0.006 0.007 0.07 0.071 55.8 474.0 mg/L mg/L 0.00 0.00 0.00 0.00 0.0 0.0 0.0 mg/L mg/L 0.01 0.00 0.00 0.00 0.005 0.005 0.027 0.00 0.00 0.00 0.00 0.005 0.227 mg/L mg/L 0.01 0.007 0.01 0.008 0.00 26.31 mg/L 0.01 0.00 0.00 0.00 0.00 0.00 13.6 mg/L 0.36 2.23 0.44 0.36 3.82 0.02 13.6 mg/L 0.36 2.203 0.59 3.82 0.02 13.6 mg/L 0.30 0.20 0.59 3.82 0.02 0.03 0.30 0.30 0.30 0.30 0.30 0.21 0.31	Arsenic	0.005	19.36	mg/L	mg/L	0.18	1.33	0.36	2.30	0.26	1.68
0.002 0.004 0.005 0.005 0.004 0.005 mg/L 0.00 0.00 0.00 0.00 0.0 0.0 0.0 mg/L 0.01 0.00 0.00 0.00 141 2220 mg/L mg/L 0.01 0.00 0.00 0.00 0.005 0.027 mg/L mg/L 0.01 0.007 0.01 0.00 0.01 2.220 mg/L mg/L 0.01 0.007 0.01 0.00 0.01 3.02 3.222 mg/L 0.02 2.04 0.00 0.00 0.02 3.222 mg/L 0.18 1.81 0.09 3.13 0.02 3.222 mg/L mg/L 0.23 0.24 0.06 3.13 0.02 3.222 mg/L mg/L 0.23 0.24 0.36 0.32 0.2 3.2 3.0 3.0 0.00 0.00 0.02 0.02 0.2	Barium	0.064	0.056	mg/L	mg/L	90.0	0.068	0.07	0.071	90.0	0.069
95.0 474.0 IIIght 112.0 0.005 0.006 0.007 IIIght 0.00 0.00 0.00 0.00 0.01 2220 IIIght IIIght 0.00 0.00 0.00 0.00 0.01 2220 IIIght IIIght 0.00 0.00 0.00 0.00 0.01 22.3 IIIght IIIght 0.00 0.00 0.00 0.00 0.02 3.2.2 IIIght IIIght 0.14 0.05 3.13 0.00 0.02 1.06 IIII IIII IIII IIII IIII IIII IIII IIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIIII IIIIII IIIIII IIIIII IIIIII IIIIII IIIIII IIIIII IIIIIII IIIIIII IIIIIII IIIII	Cadmium	0.002	0.0269	mg/L	mg/L	0.00	0.004	0.00	0.005	0.00	0.004
0.01 0.02 mg/L mg/L <th< td=""><td>Cardum Corbon Dioxido</td><td>00.0</td><td>4/4.0</td><td>mg/L</td><td>mg/L</td><td>50.13</td><td>288.2</td><td>64.48</td><td>112.0</td><td>62.14</td><td>96.9</td></th<>	Cardum Corbon Dioxido	00.0	4/4.0	mg/L	mg/L	50.13	288.2	64.48	112.0	62.14	96.9
0.005 0.027 mg/L 0.010 0.005 0.010 0.005 0.001 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002	Carbon Dioxide	141	0.0	mg/L	mg/L	0.00	0.0	0.00	0.0	0.00	0.0
0.01 26.31 mg/L 0.25 1.81 0.09 3.13 0.002 32.22 mg/L mg/L 0.30 2.203 0.59 3.822 0.02 19.6 mg/L mg/L 0.30 0.20 0.59 3.822 0.2 0.3 0.00 mg/L mg/L 0.18 0.34 0.36 0.36 0.30 0.21 0.00 mg/L mg/L 0.21 0.21 0.21 0.21 0.01 0.02 0.02 0.21 0.21 0.21 0.21 0.01 0.01 0.02 0.21 0.21 0.21 0.21 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.010 0.010 mg/L mg/L 0.01 0.01 0.01 0.01 0.000 0.010 0.010 0.01 0.01 0.00 0.01 0.01 0.010 0.010 0.01 0.01 0.01	Chromium	0.005	0.027	ma/L	J/Bu	0.01	0 007	1000	8000	1,0,7	0.007
0.002 32.22 mg/L 0.30 2.203 0.59 3.822 0.2 19.6 mg/L mg/L 0.18 1.34 0.36 2.32 0.2 3.0 mg/L 0.23 0.41 0.26 0.56 0.21 0.00 mg/L 0.21 0.21 0.21 0.21 0.017 0.01 mg/L 0.21 0.021 0.21 0.21 0.010 mg/L mg/L 0.02 0.028 0.02 0.03 0.010 0.107 mg/L 0.01 0.01 0.01 0.02 0.0002 0.010 0.017 0.01 0.01 0.01 0.01 0.0002 0.010 0.017 0.01 0.01 0.01 0.01 0.0002 0.0209 mg/L 0.01 0.01 0.01 0.01 0.0004 0.101 0.01 0.01 0.01 0.01 0.01 0.0005 0.102 0.021 0.01 </td <td>Copper</td> <td>0.01</td> <td>26.31</td> <td>mg/L</td> <td>mg/L</td> <td>0.25</td> <td>1.81</td> <td>0.49</td> <td>3.13</td> <td>0.36</td> <td>2.29</td>	Copper	0.01	26.31	mg/L	mg/L	0.25	1.81	0.49	3.13	0.36	2.29
0 19.6 mg/L mg/L 0.18 1.34 0.36 2.32 0.2 3.0 mg/L mg/L 0.23 0.41 0.26 0.56 0.3 0.00 mg/L mg/L 0.21 0.20 0.30 0.30 0.30 0.017 0.018 mg/L mg/L mg/L 0.02 0.028 0.02 0.03 0.03 0.30 0.017 0.017 0.018 mg/L mg/L mg/L 0.01 0.01 0.02 0.02 0.02 0.03 0.04 0.04 0.04 0.04 0.04 0.04	Cyanide Total	0.002	32.22	mg/L	mg/L	0.30	2.203	0.59	3.822	0.43	2.794
0.2 3.0 mg/L 0.23 0.41 0.26 0.56 0.3 0.00 mg/L 0.30 0.30 0.30 0.30 0.30 0.21 0.01 mg/L 0.21 0.22 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.01 <td>Cyanide WAD</td> <td>0</td> <td>19.6</td> <td>mg/L</td> <td>mg/L</td> <td>0.18</td> <td>1.34</td> <td>0.36</td> <td>2.32</td> <td>0.26</td> <td>1.70</td>	Cyanide WAD	0	19.6	mg/L	mg/L	0.18	1.34	0.36	2.32	0.26	1.70
0.3 0.00 mg/L 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.31 0.21 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.01	Fluoride	0.2	3.0	mg/L	mg/L	0.23	0.41	0.26	0.56	0.24	0.46
0.21 0.00 mg/L mg/L 0.21 0.21 0.21 0.21 3.2 3.2 4.26 mg/L mg/L 0.02 0.028 0.02 0.036 0.010 0.107 mg/L mg/L 0.01 0.017 0.01 0.023 0.002 0.010 0.107 mg/L 0.01 0.01 0.01 0.023 0.005 1.3776 mg/L mg/L 0.03 0.046 0.26 1.638 1.08 595.93 mg/L mg/L 0.03 0.046 0.26 1.638 0.030 0.1337 mg/L mg/L 0.00 0.012 0.01 0.01 0.048 0.2340 mg/L mg/L 0.00 0.012 0.01 0.01 0.048 0.2340 0.02 0.02 0.02 0.043 0.043 0.048 0.2340 mg/L mg/L 1.049 456.3 164.09 750.0 93.0 8888.0	Hydroxide	0.3	0.00	mg/L	mg/L	0:30	0:30	0:30	0.30	0:30	0.30
0.017 0.158 mg/L mg/L 0.02 0.028 0.02 0.036 32 14.26 mg/L mg/L 0.01 0.01 0.01 0.02 0.036 0.010 0.107 mg/L mg/L 0.01 0.01 0.01 0.023 0.005 1.3776 mg/L mg/L 0.03 0.046 0.26 1.638 1.08 595.93 mg/L mg/L 6.52 41.78 11.99 71.73 0.0030 0.1337 mg/L mg/L 0.00 0.012 0.01 0.019 57.1 5845.0 mg/L mg/L 110.49 456.3 164.09 750.0 93.0 8888.0 mg/L mg/L 70.17 0.02 0.02 0.043 57.1 5845.0 mg/L mg/L 70.00 255.70 1146.7 80.07 22.905 mg/L mg/L 70.376 1842 880.23 2.785	Iron	0.21	0.00	mg/L	mg/L	0.21	0.21	0.21	0.21	0.21	0.21
32 14.26 mg/L mg/L 32.13 32.97 32.26 33.69 0.010 0.107 mg/L mg/L 0.01 0.017 0.01 0.023 0.0002 0.0098 mg/L mg/L 0.013 0.946 0.26 1.638 1.08 595.93 mg/L mg/L mg/L 6.52 41.78 11.99 71.73 0.0030 0.1337 mg/L mg/L 0.00 0.012 0.01 0.01 57.1 5845.0 mg/L mg/L 110.49 456.3 164.09 750.0 93.0 8888.0 mg/L mg/L 70.75 1842 880.23 2809 57.1 528.4 mg/L mg/L 70.376 1842 880.23 2809 93.0 22.905 mg/L mg/L 0.28 1.634 0.49 2.785	Lead	0.017	0.158	mg/L	mg/L	0.02	0.028	0.02	0.036	0.02	0.031
0.010 0.107 mg/L mg/L 0.01 0.017 0.01 0.023 0.0002 0.0098 mg/L mg/L 0.001 0.007 0.002 0.012 1.08 595.93 mg/L mg/L 6.52 41.78 11.99 71.73 0.0030 0.1337 mg/L mg/L 0.00 0.012 0.01 0.01 57.1 5845.0 mg/L mg/L 110.49 456.3 164.09 750.0 93.0 8888.0 mg/L mg/L 703.76 1842 880.23 2809 0.070 225.70 mg/L mg/L 70.376 1842 880.23 2809	Magnesium	32	14.26	mg/L	mg/L	32.13	32.97	32.26	33.69	32.19	33.24
0.0002 0.0998 mg/L mg/L 0.001 0.007 0.002 0.012 1.08 595.93 mg/L mg/L 6.52 41.78 11.99 71.73 3.40 3.16.00 mg/L mg/L 6.29 24.98 9.18 40.86 0.0030 0.1337 mg/L mg/L 0.00 0.012 0.01 0.019 57.1 5845.0 mg/L mg/L 110.49 456.3 164.09 750.0 93.0 8888.0 mg/L mg/L 703.76 1842 880.23 2809 528 19242 mg/L mg/L 70.376 1842 880.23 2809	Manganese	0.010	0.107	mg/L	mg/L	0.01	0.017	0.01	0.023	0.01	0.019
0.005 13.776 mg/L mg/L 0.13 0.946 0.26 1.638 1.08 595.93 mg/L mg/L 6.52 41.78 11.99 71.73 3.40 316.00 mg/L mg/L 6.29 24.98 9.18 40.86 0.0030 0.1337 mg/L mg/L 0.00 0.012 0.01 0.019 57.1 5845.0 mg/L mg/L 110.49 456.3 164.09 750.0 93.0 8888.0 mg/L mg/L 703.76 1842 880.23 2809 528 19242 mg/L mg/L 70.376 1842 880.23 2809 0.070 22.905 mg/L mg/L 0.28 1.634 0.49 2.785	Mercury	0.0002	0.098	mg/L	mg/L	0.001	0.007	0.002	0.012	0.002	600.0
1.08 595.93 mg/L mg/L 6.52 41.78 11.99 71.73 3.40 316.00 mg/L mg/L 6.29 24.98 9.18 40.86 0.0030 0.0137 mg/L 0.00 0.012 0.01 0.019 0.0185 0.2034 mg/L mg/L 110.49 456.3 164.09 750.0 93.0 8888.0 mg/L mg/L 703.76 1842 880.23 2809 0.070 22.905 mg/L mg/L 0.28 1.634 0.49 2.785	Nitrite, Nitrogen	0.005	13.775	mg/L	mg/L	0.13	0.946	0.26	1.638	0.19	1.199
3.40 316.00 mg/L 6.29 24.98 9.18 40.86 0.0030 0.1337 mg/L mg/L 0.00 0.012 0.01 0.019 57.1 5845.0 mg/L mg/L 174.19 700.0 255.70 1146.7 93.0 8888.0 mg/L mg/L 703.76 1842 880.23 2809 0.070 22.905 mg/L mg/L 703.76 1842 880.23 2809	Nitrate+Nitrite-Total	1.08	595.93	mg/L	mg/L	6.52	41.78	11.99	71.73	9.05	52.73
0.0030 0.1337 mg/L mg/L 0.00 0.012 0.01 0.019 0.0185 0.2034 mg/L mg/L 110.49 456.3 164.09 750.0 57.1 5845.0 mg/L mg/L 174.19 700.0 255.70 1146.7 528 19242 mg/L mg/L 703.76 1842 880.23 2809 0.070 22.905 mg/L mg/L 703.76 164.9 27.85	Potassium	3.40	316.00	mg/L	mg/L	6.29	24.98	9.18	40.86	7.63	30.79
0.0185 0.2034 mg/L mg/L 0.02 0.032 0.02 0.043 57.1 5845.0 mg/L mg/L 110.49 456.3 164.09 750.0 93.0 8888.0 mg/L mg/L 770.0 255.70 1146.7 528 19242 mg/L 703.76 1842 880.23 2809 0.070 22.905 mg/L mg/L 0.28 1.634 0.49 2.785	Selenium	0.0030	0.1337	mg/L	mg/L	0.00	0.012	0.01	0.019	0.00	0.015
57.1 5845.0 mg/L 110.49 456.3 164.09 750.0 93.0 8888.0 mg/L 773.76 1842 880.23 2809 528 19242 mg/L 703.76 1842 880.23 2809 0.070 22.905 mg/L mg/L 0.28 1.634 0.49 2.785	Silver	0.0185	0.2034	mg/L	mg/L	0.02	0.032	0.02	0.043	0.02	0.036
93.0 8888.0 mg/L mg/L 174.19 700.0 255.70 1146.7 528 19242 mg/L mg/L 703.76 1842 880.23 2809 0.070 22.905 mg/L mg/L 0.28 1.634 0.49 2.785	Sodium	57.1	5845.0	mg/L	mg/L	110.49	456.3	164.09	750.0	135.31	563.7
3.26 19.24 mg/L mg/L 703.76 1842 880.23 2809 20.070 22.905 mg/L mg/L 0.28 1.634 0.49 2.785	Sultate	93.0	8888.0	mg/L	mg/L	174.19	700.0	255.70	1146.7	211.93	863.3
0.070 22.905 mg/L mg/L 0.28 1.634 0.49 2.785	I otal Desolved Solids	928	19242	mg/L	mg/L	703.76	1842	880.23	2809	785.48	2196
	Zinc	0.070	22.905	mg/L	mg/L	0.28	1.634	0.49	2.785	0.38	2.055

Le	ach Field Desi	gn Dimensions	
Zones	1	2	3
Avg. Perc. Rate	4.54E-03	8.82E-04	1.76E-04
Gal./Ft2/Day	1.638	0.720	0.323
10 gpm	· · · · · ·		
Ft 2	8791.0	20000.0	44582.0
Acres	0.202	0.459	1.024
12 gpm			
Ft 2	10550.0	24000.0	53498.0
Acres	0.242	0.551	1.228

APPENDIX A
Flow Sheets, Sketches, Water Quality Data

POST CLOSURE FLUID MANAGEMENT SYSTEM

FLOW SHEET

environmental consultants, inc.

alt Lake City, Utah • Cedar City, Utah • Springville, Utah • Reno, Nevada • Elko, Nevada

PROJECT NO.	NIIIx-C	0/	
BY RJB	,		
CHK'D BY		_ DATE	
SHEET NO	OF		

SKETCH 2

POST CLOSURE FLUID MANNEMENT SYSTEM

LEACH FIELD Sum# Pumo

LOCATION: NORTHWEST CORNER OF PREG. POND

NOTE 1: Sump pump discharge (ine to be insulated or heat-traced from sump to point of burial.

Indicator I

·. US

1999

#1

FILE COPY

North Lilly flow into pond

Lab Number 199908572

2000

UTAH STATE DEPARTMENT OF HEALTH DIVISION OF LABORATORY SERVICES Environmental Chemistry Analysis Report

UDEQ - DWQ ARNE HULTQUIST 288 N 1460 W PO BOX 144870 SALT LAKE CITY

UT 84114-4870

801-538-6146

Lab Number: . 200002437 Sample Type: 04 Cost Code: 352 Description: NORTH LILY FLOW FROM HEAP LEACH INTO POND Site ID: 599712 Source No: 02 Sample Date: 04/04/00 Time: 10:00 Organic Review: Inorganic Review: 07/10/00 Radiochemistry Review: Tot. Cations: 6297 mg/l 272.7 me/l
Tot. Anions: 6797 mg/l 157.9 me/l
Grand Total: 13094 mg/l %D = 26.7 Microbiology Review: Tot. Anions: 6797 mg/l Grand Total: 13094 mg/l TEST RESULTS: L-pH NO2+NO3, N $9.0 \, \text{mg/l}$ T.Sus.Sol 8.68 Cyanide 35.0 mg/l 2110.0 mg/l <5.0 ug/l D-Barium 76.0 ug/l <1.0 ug/l <5.0 ug/l D-Arsenic D-Calcium 481 mg/lD-Cadmium 332.0 ug/l D-Copper D-Chromium D-Lead $9.0 \, ug/1$ D-Iron <20.0 ug/1D-Mangan 23.4 mg/l 293 mg/l 29.0 ug/l 11.0 ug/l D-Magnesum D-Selenium 14.0 ug/l D-Potassum 5500.0 mg/l D-Sodium D-Silver Bicarbnate 248 mg/l D-Zinc <30.0 ug/1Carb. Diox 0 mg/l 0 mg/l Carbonate 1 mg/l2025 mg/l Hydroxide Chloride Tot. Alk. 203 mg/l Sulfate 4650.0 mg/l 0.235 NTU 18358 mg/l 34.87 mg/l Turbidity T. Hardns. $1296.4 \, \text{mg/l}$ TDS @ 180C Cyan. (C1) CO3 Solids 22000 umhos L-Sp. Cond <30.0 ug/1D-Aluminum 122 mg/l89.1 ug/l D-Mercury

QUALIFYING COMMENTS (*) on test results: NO COMMENTS

END OF REPORT

Date: 9/22/00

To: JBR Consultants attn. Scott Page

8160 South Highland Drive, Ste. A-4

Sandy, UT 84088

Group #: 39788 Lab #: 00-U007946 Project: SILVER PEAK

Sample Desc: Heap Leach Outfall Sample Matrix: WASTE WATER Date/Time Sampled: 8/22/00, 14:00 Date/Time Received: 8/23/00, 10:15

CERTIFICATE OF ANALYSIS

MINIMUM REPORTING LIMIT

PARAMETER	RESULT	LIMIT (MRL)	DATE ANALYZED	METHOD	analyst
INORGANIC PARAMETERS					
Alkalinity, as Bicarbonate, mg/L	388	1	8/25/00 12:00	SM 2320B	TSM
Alkalinity, as Carbonate, mg/L	< 1	1	8/25/00 12:00	SM 2320B	TSM
-1 4 1 7 //			4104104		

Alkalinity, as Bicarbonate, mg/L	388	1	8/25/00 12:00	SM 2320B	TSM
Alkalinity, as Carbonate, mg/L	< 1	1	8/25/00 12:00	SM 2320B	TSM
Chloride, mg/L	2,220	10	8/30/00 14:00	EPA 325.3	TSM
Conductance, Specific, umhos/cm	23,300	1	8/31/00 10:15	EPA 120.1	MJB
Cyanide, Amenable to Cl2, mg/L	18.8	0.002	9/ 1/00 13:00	ASTM D2036	PNM
Cyanide, Total, mg/L	19	1	9/ 1/00 13:00	ASTM D2036	PNM
Cyanide, WAD, mg/L	14.4	0.457	9/8/00 8:00	ASTM D2036	PNM
Fluoride, mg/L	6.7	0.2	9/ 7/00 10:00	EPA 340.2	TSM
Mercury, as Hg (D), mg/L	< 0.0002	0.0002	B/28/00 12:40	EPA 245.2	MJB
Nitrite, Nitrogen. mg/L	51	1.25	8/23/00 12:45	EPA 354.1	TSM
Nitrate+Nitrite-Total, mg/L	145	10	8/31/00 15:00	EPA 353.1	EJB
pH, units	8.1	0.1	8/23/00 12:30	EPA 150.1	LPS
Sulfate, mg/L	10,200	2000	8/29/00 16:00	EPA 375.4	TSM
Total Dissolved Solids, mg/L	20,000	25	8/24/00 12:30	EPA 160.1	LPS
Barium (D), as Ba, mg/L	0.010	0.005	8/29/00 15:19	EPA 200.7	JJT

Approved By:

David Gayer, Laboratory Director

MRL = Report detection limit

Page 1

{generic.rpt}

6100 SOUTH STRATLER SALT LAKE GITY UTAH 84107 6905 801 262 7299 PHONE 801 262 7378 FAX

Date: 9/22/00

To: JBR Consultants attn. Scott Page

8160 South Highland Drive, Ste. A-4

Sandy, UT 84088

Group #: 39788 Lab #: 00-U007946 Project: SILVER PEAK

Sample Desc: Heap Leach Outfall Sample Matrix: WASTE WATER

Date/Time Sampled: 8/22/00 , 14:00 Date/Time Received: 8/23/00, 10:15

CERTIFICATE OF ANALYSIS

MUMINIM REPORTING

PARAMETER	RESULT	LIMIT (MRL)	DATE ANALYZED		METHOD	analyst
INORGANIC PARAMETERS						
Calcium (T), as Ca, mg/L	350 < 0.005	0.2 0.005	8/29/00 8/29/00		EPA 200.7 EPA 200.7	JJT JJT
Chromium (D), as Cr, mg/L Copper (D), as Cu, mg/L	19	0.01	8/29/00 8/29/00	15:19	EPA 200.7 EPA 200.7	JJT JJT
Magnesium (T), as Mg, mg/L Potassium (T), as K, mg/L	29 310	0.2	8/29/00	15:19	EPA 200.7	JJT JJT
Sodium (T), as Na, mg/L Zinc (D), as Zn, mg/L	5,600 0.42	20 0.01	9/ 5/00 8/29/00	15:19	EPA 200.7 EPA 200.7	JJT JJT
Arsenic (D), as As, mg/L Cadmium (D), as Cd, mg/L	0.2464	0.0005	9/ 6/00 9/ 6/00	14:16	EPA 200.8 EPA 200.8 EPA 200.8	JJT JJT
Lead (D), as Pb. mg/L Selenium (D), as Se, mg/L	0.1581	0.0005	9/ 6/00 9/ 6/00 9/ 6/00	14:16	EPA 200.8 200.2/200.8	JJT
Silver (D), as Ag, mg/L Temperature, Receiving, C	0.3147 19.0	0.0005	8/23/00		200.2/200.	CSM

Approved By:

David Gayer, Laboratory Director

MRL = Report detection limit

Page

(generic.rpt)

6100 SOUTH STRATLER SALT LAKE CITY UTAH 64107 6905 801 262 7299 PHONE 801 262 7378 FAX

APPENDIX B Well Logs

WELLPRT Well Log Information Listing

Version: 2000.10.23.00 Rundate: 11/10/2000 04:47 PM

Utah Division of Water Rights

Water Well Log

LOCATION:

S 1362 ft W 913 ft from NE CORNER of SECTION 21 T 11S R 3W

BASE SL Elevation: feet

OWNER(S):

OWNER: McIntyre, Samuel ADDRESS: McIntyre Rancy

CITY: Leamington STATE: UT ZIP: 84638 REMARKS: Samuel McIntyre Investment Company

DRILLER ACTIVITIES:

ACTIVITY # 1 NEW WELL

DRILLER: STEPHENSON DRILLING

LICENSE #: 106

START DATE: 07/13/1971 COMPLETION DATE: 08/16/1971

BOREHOLE INFORMATION:

Depth(ft) Diameter(in) Drilling Method Drilling Fluid

From To

0 605 16 CABLE

LITHOLOGY:

Depth(ft) Lithologic Description

Color Rock Type

From To

1 15 WATER-BEARING, OTHER

SURFACE

SURFACE 15' WATER
15 52 WATER-BEARING, CLAY, SILT, SAND

WATER POOR

52 58 CLAY, SAND, GRAVEL

GREY

SMALL GRAVEL

58 68 SILT, SAND

68 70 CLAY

70 100 SILT, SAND, GRAVEL

100 105 CLAY

105 148 CLAY, SAND, GRAVEL

		STRATIFIED LAYE	D.C.					
148	153		NO.					
148	153	CLAY, GRAVEL MIXED						
153	183	CLAY, SAND, GRAVE	T					
133	103	CLAY SHOWING	ь					
183	215	CLAY						
103	213	NO WATER						
215	217	SAND, GRAVEL						
217		CLAY						
219	221	SAND, GRAVEL						
221		CLAY, GRAVEL						
251	276	CLAY						
GREY	2.0	· · · · · · · · · · · · · · · · · · ·						
276	287	CLAY						
TAN				•	•			
287	305	CLAY, GRAVEL						
LIGHT		•						
		GRAVEL SHOWING			•			
305	327	CLAY, GRAVEL						
		STRATIFIED LAYE	RS					
327	396	CLAY						
396	400	GRAVEL						
		GOOD						
400	412	CLAY, GRAVEL		•				
		MIXED						
412	446	CLAY						
GREY								
446	450	CLAY, GRAVEL						
GREY			•					
		GRAVEL SHOWING						
450	453	GRAVEL						
453	493	CLAY						
493	495	GRAVEL						
495	507	CLAY, GRAVEL						
		THIN LAYERS						
507		CLAY						
565	605	CLAY						
SHALE								
WATER LI			Water Terrel	(foot)	Status			
	Dat	e Time	Water Level (-)above grow		Scacus			
	00.	16/1971	8.00	una	STATIC			
	087	16/19/1	8.00		SIRIIC			
CONCUDIT	ארביייר ארביייר	- CASING:						
CONSTRU	LION	Depth(ft) Mater	ial	Gage (in) Diameter(in)			
	Ξ.	From To	Idi	ougo (111, D201110001 (111)			
		1 580		.312	19			
		1 300						
CONSTRUC	CTION	- SCREENS/PERFOR	ATIONS:					
Depth(ft) Screen(S) or Perforation(P) Slot/Perf. siz Screen								
Diam/Length Perf(in) Screen Type/# Perf.								
- ",	_	From To	± ±					
		105 183	PERFORATION		.375	3		
MILLS/25)					_		
		215 327	PERFORATION		.375	3		
325								

200	396	453	PERFORATION	.375	3
200	493	580	PERFORATION	.375	3
300					

GENERAL COMMENTS:

*WATER RIGHT NO. 68-644

^{*}WELL did not deliver the 8 sec.-ft. alloted in the application.

WELLPRT Well Log Information Listing

Version: 2000.10.23.00 Rundate: 11/10/2000 04:52 PM

Utah Division of Water Rights

Water Well Log

LOCATION:

914 ft from NE CORNER of SECTION 21 T 11S R 3W S 1363 ft W

BASE SL Elevation: feet

DRILLER ACTIVITIES:

ACTIVITY # 1 WELL REPLACEMENT

DRILLER: STEPHENSON DRILLING

LICENSE #: 106

START DATE: 12/05/1973 COMPLETION DATE: 12/20/1973

BOREHOLE INFORMATION:

Depth(ft) Diameter(in) Drilling Method Drilling Fluid

From To

580 16 CABLE

LITHOLOGY:

Depth(ft) Lithologic Description

Color Rock Type From Τo 0 2 OTHER

SURFACE

2 62 WATER-BEARING, CLAY, SILT, SAND

WATER 14 FT.

62 102 CLAY, GRAVEL

GRAVEL SHOWING

102 195 CLAY, SILT, SAND 195 222 CLAY, SAND, GRAVEL

222 235 CLAY, GRAVEL

GRAVEL SHOWING

235 248 CLAY, SAND, GRAVEL 248 258 CLAY

RED

258 295 CLAY, SAND, GRAVEL

295 360 WATER-BEARING, CLAY, SILT

WATER WEAK

360 580 CLAY

GREY & BROWN

CHANGING COLOR GRAY & BROWN.

WATER LEVEL DATA:

Date

Time Water Level (feet) Status

12/15/1973

(-) above ground 23.00

STATIC

CONSTRUCTION - CASING:

Depth(ft) Material

Gage(in) Diameter(in)

From To

1 534

312 16

CONSTRUCTION - SCREENS/PERFORATIONS:

Depth(ft) Screen(S) or Perforation(P) Slot/Perf. siz Screen

Diam/Length Perf(in) Screen Type/# Perf.

From To

50 360 PERFORATION .375

MILLS/1300

WELL TESTS:

Date

Test Method Yield (CFS) Drawdown (ft) Time

Pumped (hrs)

12/15/1973 PUMP

.334

WELLPRT Well Log Information Listing

Version: 2000.10.23.00 Rundate: 11/10/2000 04:58 PM

Utah Division of Water Rights

Water Well Log

LOCATION:

10 ft from N4 CORNER of SECTION 13 T 11S R 3W 850 ft W

BASE SL Elevation:

DRILLER ACTIVITIES:

ACTIVITY # 1 NEW WELL

DRILLER: Robinson Drilling Company

LICENSE #: 10

COMPLETION DATE: 09/18/1978 START DATE: 05/25/1978

BOREHOLE INFORMATION:

Depth(ft) Diameter(in) Drilling Method Drilling Fluid

From

627 16 CABLE

LITHOLOGY:

Depth(ft) Lithologic Description

Color R		ock Type
From	To	
0	83	CLAY, COBBLES, BOULDERS
83	92	CLAY
92	114	CLAY, GRAVEL, COBBLES
114	142	CLAY
142	171	CLAY, GRAVEL, BOULDERS
171	178	GRAVEL
178	187	CLAY, GRAVEL
187	212	GRAVEL
212	271	CLAY
271	327	CLAY, GRAVEL, COBBLES
327	361	WATER-BEARING, GRAVEL, COBBLES, BOULDERS
361	501	CLAY, GRAVEL, COBBLES

501 534 CLAY

627 WATER-BEARING, CLAY, GRAVEL 534

WATER LEVEL DATA:

Date

Time Water Level (feet)

Status (-)above ground

08/22/1978

263.00

STATIC

CONSTRUCTION - CASING:

Depth(ft) Material

Gage(in) Diameter(in)

From To

0 623 NEW

.312

16

CONSTRUCTION - SCREENS/PERFORATIONS:

Depth(ft) Screen(S) or Perforation(P) Slot/Perf. siz Screen

Diam/Length Perf(in) Screen Type/# Perf.

From To

285 355 PERFORATION .375

3

MILLS/325

495 365

PERFORATION

.375

3

565

535 615 PERFORATION .375

3

325

WELL TESTS:

Date

Test Method

Yield (CFS) Drawdown (ft) Time

Pumped (hrs)

08/22/1978 PUMP

1.270

347

23

WATER QUALITY DATA AVAILABLE

GENERAL COMMENTS:

*SEAL - Bentonite clay

*PROOF is not due until 1994.

WELLPRT Well Log Information Listing

Version: 2000.10.23.00 Rundate: 11/10/2000 04:59 PM

Utah Division of Water Rights

Water Well Log

LOCATION:

S 500 ft W 10 ft from N4 CORNER of SECTION 13 T 11S R 3W

BASE SL Elevation: feet

DRILLER ACTIVITIES:

ACTIVITY # 1 NEW WELL

DRILLER: Robinson Drilling Company

LICENSE #: 10

START DATE: 03/30/1978 COMPLETION DATE: 05/25/1978

BOREHOLE INFORMATION:

Depth(ft) Diameter(in) Drilling Method Drilling Fluid

From To

0 515 16 CABLE

LITHOLOGY:

309

Depth(ft) Lithologic Description

Color	R	ock Type
From	To	
0	12	CLAY
. 12	17	CLAY, BOULDERS
17	83	CLAY, GRAVEL, COBBLES
83	117	CLAY
117	157	CLAY, GRAVEL
157	193	CLAY
193	200	SAND, GRAVEL
200	248	CLAY, GRAVEL
248	251	CLAY
251	294	CLAY, GRAVEL
294	309	CLAY

324 CLAY, GRAVEL, BOULDERS

324	332 C	LAY								
332	344 C	LAY, CO	BBLES							
344	358 C	LAY								
		LAY, GR	AVEL							
396 406	406 C	LAY								
		RAVEL								
		LAY		-						
432		AND, GR								
438	464 C									
464	512 S	AND, GR	AVEL,	COBBLES						
WATER LE	VEL DAT	A:								
	Date		Time		Level (fe ve ground	•	Statu	s		
	05/02	/1978		131.00	_	-	STATI	С		
CONSTRUC	TION -	CASING	•							
001.021.00				erial		Gage(i	n) D	iamet∈	er(in)	
		m To					·			
		0 512	2 NEV	₹		.375		16		
20\10mm			- /							
CONSTRUC				CORATIONS:	Darfarati	ion (D)	61 o+	/Porf	ciz	Screen
Diam/Leng				Type/# Pe		LOII(F)	3100	/rell.	, 312	ocreen
Diam, beng	Fro			I TAbel# Le	L L •					
		5 34!		PERFORA	TION		3			.375
MILLS/170		J J 1.	•	1 2111 0141			_			
		8 370	0	PERFORA	TION		3			.375
MILLS/65										
	37	5 38	5	PERFORA	TION		3			.375
MILLS/115										
	40	5 40	В	PERFORA	TION	•	3			. 375
MILLS/20										
	42	4 43	8	PERFORA	TION		3			.375
MILLS/85							_			225
		4 50	8	PERFORA	TION		3			.375
MILLS/205										
WELL TES	TS:									
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Date		Test	Method	Yield	(CFS)	Draw	down	(ft)	Time
Pumped (h			1000		11014	(0.0)			, /	
	<i>,</i>									
	05/25	/1978	PUMP		2.94	1	2	50		20

WATER QUALITY DATA AVAILABLE

GENERAL COMMENTS:

*PROOF not due until 1994

WELLPRT Well Log Information Listing

Version: 2000.10.23.00 Rundate: 11/11/2000 12:59 PM

Utah Division of Water Rights

Water Well Log

LOCATION:

N 1803 ft W 103 ft from S4 CORNER of SECTION 13 T 11S R 3W

BASE SL Elevation: feet

DRILLER ACTIVITIES:

ACTIVITY # 1 NEW WELL

DRILLER: Robinson Drilling Company

LICENSE #: 10

BOREHOLE INFORMATION:

Depth(ft) Diameter(in) Drilling Method Drilling Fluid

From To

0 780 16 CABLE

LITHOLOGY:

Depth(ft) Lithologic Description

Color	R	ock Type
From	To	
0	6	CLAY
6	71	CLAY, GRAVEL
71	171	CLAY, COBBLES
171	178	SILT
178	270	CLAY
270	285	WATER-BEARING, CLAY
		SMALL AMOUNT OF WATER
285	330	CLAY, GRAVEL
330	421	WATER-BEARING, CLAY, GRAVEL, COBBLES
		WATER INCREASING
421	437	CLAY
437	505	CLAY, GRAVEL

505 515 536 631 674 689 698	631 674 689 698 703	CLAY, CLAY, CLAY, CLAY, CLAY SILT	GRAVE SAND, GRAVE	GRAVEL							
703 746		SAND SILT,	CINAS								
767		SAND,		EL							
WATER LE	VET. D	አ ጥኔ •									
WALLK III	Date		7	lime	Water L	evel (f	eet)	Sta	tus		
	01/	18/197	9		(-)abov	e groun	d	STA	TIC		
					33.00			JIA	110		
CONSTRUC				Materi	21		Gage (inl	Diamet	er(in)	
		rom	To	Maceri	.aı		Gage	T11)	Diamet	.er (III)	
		0	780	NEW			.312		16		
CONSTRUCT	th Pe	Depth(rf(in)	ft) Sci	Screen	(S) or Po		ion(P)	Sl	ot/Perf	. siz	Screen
		rom 330	To 515		PERFORAT	TON		. 6	25		3
MILLS/615						2011					_
MILLS/35	!	587	595		PERFORAT	ION		. 6	25		3
•		614	620		PERFORAT	ION		. 6	25		3
MILLS/30		632	695		PERFORAT	ION		. 6	25		3
MILLS/250											2
MILLS/270	·	705	775		PERFORAT	ION		. 6	25		3
CONSTRUC	1	- FILT Depth(rom 0		Materi		LS	Amou	nt	Densi	.ty(pc:	E)
WELL TES	rs:										
Pumped (h	Date rs)	e	Тє	est Met	hod	Yield	(CFS)	Dr	awdown	(ft)	Time
	01/	18/197	9 Pt	JMP		3.00	8		212		27

GENERAL COMMENTS:

*PROOF not due until 1994.

WELLPRT Well Log Information Listing

Version: 2000.10.23.00 Rundate: 11/11/2000 12:53 PM

Utah Division of Water Rights

Water Well Log

```
LOCATION:
```

N 1803 ft W

3 ft from S4 CORNER of SECTION 13 T 11S R 3W

BASE SL Elevation: feet

DRILLER ACTIVITIES:

ACTIVITY # 1 NEW WELL

DRILLER: Robinson Drilling Company

16

LICENSE #: 10

COMPLETION DATE: 09/18/1978 START DATE: 05/25/1978

BOREHOLE INFORMATION:

Depth(ft) Diameter(in) Drilling Method Drilling Fluid

From To

627

LITHOLOGY:

178

Depth(ft) Lithologic Description

Color	Ro	ock Type
From	To	
0	83	CLAY, COBBLES, BOULDERS
		271-327 - WATER
		327-361 - WATER
		361-501 - WATER
		501-534 - WATER
		534-627 - WATER
83	92	CLAY
92	114	CLAY, GRAVEL, COBBLES
114	142	CLAY
142	171	CLAY, GRAVEL, BOULDERS
171	178	GRAVEL

187 CLAY, GRAVEL

187 212 GRAVEL 212 271 CLAY 327 CLAY, GRAVEL, COBBLES
361 GRAVEL, COBBLES, BOULDERS 271 327 361 501 CLAY, GRAVEL, COBBLES 501 534 CLAY 534 627 CLAY, GRAVEL

WATER LEVEL DATA:

Date

Time

Water Level (feet) Status

(-)above ground

08/22/1978

264.00

STATIC

CONSTRUCTION - CASING:

Depth(ft) Material

Gage(in) Diameter(in)

From To

0 623

16 .312

WELL No.

C-4284

STEFFEN ROBERTSON & KIRSTEN Consulting Engineers

CLIENT DATA SUPPLIED BY PREVIOUS QWNER TINTIC PROJECT__ PROJECT No. 18701 DATE DRILLED 9/29/80

SHEET 1 of 1 INSPECTOR DRILLER SECTION 27 @ TANKS STATION LOCATION SURFACE ELEVATION COORDINATES CUTTINGS DESCRIPTION DEPTH Graphic WELL COMMENTS (feet) YELLOW BROWN CLAY - 3' CONGLOMERATE, LIME ROCK, QUARTZ - 48' YELLOW CLAY - 20' 100 CONGLOMERATE, LIME ROCK, HARD QUARTZ - 212' -200 LOOSE CONGLOMERATE, LIME ROCK WITH -300 GRAVEL, PORPHRY AND FINE SAND - 357' 6... -400 PERFORATION ZONE 390' TO 436' CONGLOMERATE, LIME ROCK, QUARTZ EXTREMELY HARD AND TOUGH, WATER BEARING - 80' -500 CONGLOMERATE, LOOSE ROCK, CLAY - 14' CONGLOMERATE, LIME ROCK, QUARTZ, HARD, TOUGH, SOME WATER SEEPAGE - 78' -600 TOTAL DEPTH 610' STATIC LEVEL 281' FLOW RATE 260 GPM ALL 12" HOLE 1

STEFFEN ROBERTSON & KIRSTEN

WELL No. CLIENT DATA SUPPLIED BY PREVIOUS OWNER C-4288 TINTIC PROJECT_ PROJECT No. 13701 DRILLER

SHEET 1 of 1 Consulting Engineers DATE DRILLED 9/29/80 INSPECTOR 8E 1/4 SECTION 27 LOCATION SURFACE ELEVATION COORDINATES CUTTINGS DESCRIPTION DEPTH COMMENTS Graphic WELL (feet) YELLOW BROWN CLAY -- 4' 0 -100 SEDIMENTARY ALLUVIUM - 508' (CONGLOMERATE) -200 -300 PERFORATION ZONE 298' TO 302' 340' TO 346' 359' TO 383' -400 418' TO 424' -500 512 MONZONITE - 18' 530 YELLOW CLAY - 34' CONGLOMERATE, LIME ROCK - 16' 579 YELLOW CLAY, MONZONITE - 51' 600 650 GRAY LIME ROCK - 22' 052 YELLOW CLAY - 28' GRAY LIME ROCK - 8' -700 YELLOW CLAY 37' GREY LIME ROCK WITH YELLOW CLAY - 27' YELLOW CLAY BOULDERS - 12'
PORPHRY - 13'
LIME QUARTZITE - 12'
LOOSE ROCK AND SAND - 10' -800 TOTAL DEPTH 795' STATIC LEVEL 274' FLOW RATE 60 GPM 415' OF 17" HOLE 391' OF 8" HOLE

STEFFEN ROBERTSON & KIRSTEN Consulting Engineers

270'

290'

CLIENT Data Supplied by Previous WELL No.
PROJECT Tintic Owner NLE-1
PROJECT No. 13701

DATE DRILLED 1/19/81-1/22/81

DRILLER NSPECTOR

		DHILLER
LOCATION		1/4, Sec. 26, T. 10S, R.3W
COORDIN	ATES	SURFACE ELEVATION
COMMENT	ALL	to 255', water to 595'. Water table at 440'. Air lift water 4 gmp
at 500)', 8 qpr	m at 520', 11 gpm at 540', 9 gpm at 555', 15 gpm at 575', 9 and 14
FROM	595°.	Ec = 1250 mmhos/cm DESCRIPTION
	+	
0'	10'	Medium brown soil to 1 foot over coarse sand, silt and pebbles mainly limestone.
10'	20'	Medium brown silt and fine sand containing grey limestone pebbles.
20'	30'	Light tan silt and fine sand containing numerous small pebbles of grey limestone.
30 '	50'	Light tan silt to coarse sand with granules and pebbles of grey limestone and some quartzite.
50 '	80'	Medium to light brown silt with fine sand, minor amounts of coarse sand and granules, scattered small pebbles.
80'	90'	Medium brown silt and bery fine sand.
90'	100'	Medium to light brown silt with fine sand, minor amounts of coarse sand and granules, scattered pebbles.
100'	110'	Light brown silt containing sand to pebbles of limestone and quartzite.
110'	120'	Medium brown silt and fine sand.
120'	130'	Light brown silt and sand with small pebbles of limestone.
130'	160'	Light brown fine sand containing silt and pebble.
160'	170'	Reddish brown silt containing a few pebbles of limestone.
170'	180'	Light grey silt and sand containing dark grey pebbles of limestone.
180'	190'	Medium brown silt to coarse sand containing small limestone pebbles.
190'	210'	Light brown silt with small amounts of sand and granules.
210'	230'	Light brown silt and sand containing large pebbles and cobbles (?) of grey limestone.
230'	260'	Medium brown sand containing graules and small pebbles of limestone and quartzite.
260'	270'	Medium brown sand containing small amounts of silt.
2701	10001	.

Coarse sand and pebbles of plutonic rock, (quartz monzonite) and quartzite. (Silt from 285' and 287').

STEFFEN ROBERTSON & KIRSTEN **Consulting Engineers**

CLENT Data Supplied by Previous PROJECT Tintic **Owner** PROJECT_No. 13701 DATE DRILLED 1/19/81-1/22/81 DRILLER

SHEET 2 OF 2

INSPECTOR

WELL No.

NLE-1

LOCATION SE 1/4, Sec. 26, T. 10S, R.3W

COORDINATES

SURFACE ELEVATION

COMMENTS Air to 255', water to 595', Water table at 440', air lift water 4 gpm

at 50	0' 8 gr	om_at 520'. 11 gpm at 540'. 9 gpm at 555'. 15 gpm at 575', 9 and 14
gpm a	t 595'.	Ec = 1250 mmhos/cm
FROM	то	DESCRIPTION
290'	380'	Coarse sand and pebbles including plutonic rock, quartzite and dark grey limestone. (Medium brown fine sand and silt from 369' to 371').
3801	390'	Coarse sand and gravel composed of plutonic rock and quartzite. Limestone nearly absent. (Bed of silt and fine sand 385'_to 387').
390'	400	Coarse sand and gravel composed of plutonic rock and quartzite. No limestone. (Clay and silt 396' to 398').
4001	410'	Medium brown silt, clay, sand and gravel.
410'	440'	Coarse sand and gravel of plutonic rock including quartzite. No limestone. (Brown silt from 421' to 425'). (Water table at 440').
440'	500 '	Predominantly coarse sand and granules of plutonic rock including quartzite, some silt and pebbles. No limestone.
500 '	560°	Coarse sand and granules of plutonic rock. No pebbles but some silt.
560'	580'	Coarse sand, clay and silt with a few pebbles of plutonic rock.
580'	595'	Coarse sand granules of plutonic rock. No silt or clay.
	•	
	,	
Ì		

STEFFEN ROBERTSON & KIRSTEN

PROJECT Tintic owner PROJECT Tintic PROJECT_No. 1370 SHEET 1 OF 2 DATE DRILLED 1/22/81-1/25/81

8TEFF		ERTSON & KIRSTEN ting Engineers	DRILLER NSPECTOR
LOCATION	Sec.	35, T 10S, R.3W	
COORDINA			SURFACE ELEVATION
COMMENT	S Air 1	to 70', water to 528',	water table at 330'. Air lift water 3 gpm
			00', 15 gpm at 415', 13.6 gpm at 435' 18.8 gpm
		gpm at 475'. 35 gpm at	
FROM	то		DESCRIPTION
0'	10'	Medium tan sand to p	ebbles (quartzite and grey limestone) containing
10'	20'	Medium tan silt, cla few pebbles of gr	y and fine sand containing coarse sand and a ey limestone.
20'	30'	Medium tan, silt to	fine sand; a few pebbles of grey limestone.
30'	40'.	Medium ţan silt to f	ine sand with a small amount of mediume sand.
40 '	50'	Medium tan silty wit limestone.	h some fine sand and a few pebbles of grey
₋ 50'	60'		very fine sand with substantial amounts of e and quartzite).
60'	70'	Medium tan silt and	clay with small amounts of medium size sand.
70'	80'	Medium tan sand to p substantial clay.	ebbles (limestone and quartzite) contains
80'	100'.	Light tan coarse san minor amounts of	d and pebbles (limestone and quartzite) with silt.
100'	110'	Medium tan silt cont quartzite.	aining sand to pebbles of limestone and
110'	140'	Light tan coarse san minor amounts of	d and pebbles (limestone and quartzite) with silt.
140'	150'	Medium tan silt cont quartzite.	aining sand to cobbles of limestone and
150'	190'	Light tan coarse san minor amounts of	d and pebbles (limestone and quartzite) with silt.
190'	200'	Medium tan silt cont quartzite.	aining sand to cobbles of limestone and
200 '	230'	Light tan coarse san ' minor amounts of	d and pebbles (limestone and quartzite) with silt.
230'	240'	Medium tan silt to c quartzite.	oarse sand and pebbles of limestone and
2401	290'	Medium tan coarse sa minor amounts of	nd and pebbles of limestone and quartzite with silt.
290'	300'	Medium tan silt with	sand to pebbles of limestone and quartzite.
300'	310'		ebbles (limestone and quartzite) containing

STEFFEN ROBERTSON & KIRSTEN Consulting Engineers

WELL No. CLEENT Data supplied by previous PROJECT Tintic NLE-2 PROJECT. No. ____13701 SHEET 1 OF 2 DATE DRILLED 1/22/81-1/25/81 **INSPECTOR** DRILLER

LOCATION Sec. 35, T 10S, R.3W

COORDINATES SURFACE ELEVATION

COMMENTS Air to 70' water to 5281 water table at 2201

COMMENT	S Air t	o 70', water to 528', water table at 330'. Air lift water 3 gpm
at 36	0', 9.7	gpm at 380', 9 qpm at 400', 15 qpm at 415', 13.6 qpm at 435', 18.8
gpm at 4	55', 27.	3 gpm at 475', 35 gpm at 495, 50 gpm at 515'.
FROM	ТО	DESCRIPTION
290'	300	Medium tan sand to pebbles of limestone and quartzite - no silt.
300'	310'	Medium tan clay and silt containing sand to pebbles of limestone and quartzite.
310'	· 320 t	Medium tan silt containing sand to pebbles of limestone and quartzite with a few pebbles of limestone.
320'	330'	Medium tan silt and clay with sand and pebbles of limestone and quartzite.
330'	390'	Medium tan sand to pebbles (plutonic rock, limestone and quartzite) with minor amounts of silt and fine sand.
390'	400'	Medium tan clay containing sand to pebbles of limestone and quartzite.
400'	4101	Medium tan clay with some coarse sand.
· 410'	420'	Medium tan clay with coarse sand and pebbles.
420'	4301	Medium tan clay with medium to coarse sand.
430'	440'	Medium tan sand to granules with minor amounts of silt.
440'	450'	Medium tan sand to pebbles of plutonic rocks, limestone and quartzite with minor amounts of silt.
450'	460'	Medium sand to granules with minor amounts of pebbles and silt.
460 ¹	5281	Dark brown medium to coarse sand. No silt, small amounts of fine sand.
TD ·	528'	Medium tan heavy clay.
·		
		·
	-	
]	1	

APPENDIX C Tables

						T)	(The LNEWS and SIWS Data contain leach field effluent.)	nd SIWS Dat	a contain lea	ch field effl	lent.)		
	Assumed Concentration in	Average Concentration in Leach Pad	Units	Units	Eure	Eureka (Rainfall 0.92')	0.92')	Little S	Little Sahara (Rainfall 0.53')	all 0.53')	Avera	Average (Rainfall 0.73')	0.73')
	Recharge Water (from Table 3)	Effluent (from Appendix C)			LNEWS	MGWS	SIWS	LNEWS	MGWS	SIWS	LNEWS	MGWS	SIWS
		Ì		Liters	2.54E+11	1.91E+09	3.11E+08	1.46E+11	1.11E+09	1.88E+08	2.00E+11	1.52E+09	2.49E+08
								Mass of ea	Mass of each Parameter	_			
Alkalinity, as Bicarbonate	137.25	277.75	mg/L	mg	3.49E+13	2.67E+11	4.82E+10	2.01E+13	1.57E+11	3.13E+10	2.75E+13	2.14E+11	3.98E+10
Alkalinity, as Carbonate	0.75	0	mg/L	mg	1.91E+11	1.43E+09	2.33E+08	1.10E+11	8.30E+08	1.41E+08	1.50E+11	1.14E+09	1.87E+08
Aluminum	0.008	0.000	mg/L	mg	2.03E+09	1.53E+07	2.49E+06	1.17E+09	8.85E+06	1.50E+06	1.60E+09	1.21E+07	2.00E+06
Arsenic	0.005	19.36	mg/L	mg	1.66E+09	3.95E+08	3.87E+08	1.12E+09	3.91E+08	3.86E+08	1.39E+09	3.93E+08	3.86E+08
Barium	0.065	0.056	mg/L	mg	1.65E+10	1.25E+08	2.13E+07	9.52E+09	7.31E+07	1.33E+07	1.30E+10	9.97E+07	1.73E+07
Cadmium	0.002	0.0269	mg/L	mg	5.09E+08	4.35E+06	1.16E+06	2.93E+08	2.75E+06	9.11E+05	4.01E+08	3.57E+06	1.03E+06
Calcium	8'99	474.0	mg/L	mg	1.42E+13	1.16E+11	2.68E+10	8.18E+12	7.12E+10	1.99E+10	1.12E+13	9.41E+10	2.34E+10
Carbon Dioxide	0.3	0.0	mg/L	mg	7.63E+10	5.72E+08	9.34E+07	4.39E+10	3.32E+08	5.63E+07	6.01E+10	4.55E+08	7.48E+07
Chloride	133	2220	mg/L	mg	3.39E+13	2.98E+11	8.56E+10	1.95E+13	1.91E+11	6.91E+10	2.67E+13	2.46E+11	7.73E+10
Chromium	0.005	0.027	mg/L	mg	1.27E+09	1.01E+07	2.09E+06	7.33E+08	6.07E+06	1.48E+06	1.00E+09	8.12E+06	1.78E+06
Copper	0.01	26.31	mg/L	mg	3.07E+09	5.43E+08	5.27E+08	1.99E+09	5.35E+08	5.25E+08	2.53E+09	5.39E+08	5.26E+08
Cyanide Total	0.004	32.22	mg/L	mg	1.66E+09	6.49E+08	6.42E+08	1.23E+09	6.45E+08	6.42E+08	1.44E+09	6.47E+08	6.42E+08
Cyanide WAD	0	19.6	mg/L	mg	3.90E+08	3.90E+08	3.90E+08	3.90E+08	3.90E+08	3.90E+08	3.90E+08	3.90E+08	3.90E+08
Fluoride	0.2	3.0	mg/L	mg	5.09E+10	4.41E+08	1.22E+08	2.94E+10	2.81E+08	9.76E+07	4.01E+10	3.63E+08	1.10E+08
Hydroxide	0.25	0.00	mg/L	mg	6.36E+10	4.77E+08	7.78E+07	3.66E+10	2.77E+08	4.69E+07	5.01E+10	3.79E+08	6.24E+07
Iron	0.17	0.00	mg/L	mg	4.32E+10	3.24E+08	5.29E+07	2.49E+10	1.88E+08	3.19E+07	3.41E+10	2.58E+08	4.24E+07
Lead	0.013	0.158	mg/L	mg	3.31E+09	2.79E+07	7.19E+06	1.91E+09	1.75E+07	5.58E+06	2.61E+09	2.29E+07	6.39E+06
Magnesium	30.8	14.26	mg/L	mg	7.83E+12	5.90E+10	9.87E+09	4.51E+12	3.44E+10	6.07E+09	6.17E+12	4.70E+10	7.97E+09
Manganese	0.009	0.107	mg/L	mg	2.29E+09	1.93E+07	4.93E+06	1.32E+09	1.21E+07	3.82E+06	1.81E+09	1.58E+07	4.37E+06
Mercury	0.0002	0.0998	mg/L	mg	5.28E+07	2.37E+06	2.05E+06	3.13E+07	2.21E+06	2.02E+06	4.21E+07	2.29E+06	2.04E+06
Nitrite, Nitrogen	0.004	13.775	mg/L	mg	1.29E+09	2.82E+08	2.75E+08	8.60E+08	2.78E+08	2.75E+08	1.08E+09	2.80E+08	2.75E+08
Nitrate+Nitrite-Total	1.01	595.93	mg/L	mg	2.69E+11	1.38E+10	1.22E+10	1.60E+11	1.30E+10	1.20E+10	2.14E+11	1.34E+10	1.21E+10
Potassium	3.37	316.00	mg/L	mg	8.63E+11	1.27E+10	7.34E+09	5.00E+11	1.00E+10	6.92E+09	6.81E+11	1.14E+10	7.13E+09
Selenium	0.0029	0.1337	mg/L	mg	7.40E+08	8.19E+06	3.56E+06	4.27E+08	5.87E+06	3.20E+06	5.84E+08	7.06E+06	3.38E+06
Silver	0.0144	0.2034	mg/L	mg	3.66E+09	3.15E+07	8.53E+06	2.11E+09	2.00E+07	6.75E+06	2.89E+09	2.59E+07	7.64E+06
Sodium	57.7	5845.0	mg/L	mg	1.48E+13	2.26E+11	1.34E+11	8.57E+12	1.80E+11	1.27E+11	1.17E+13	2.04E+11	1.31E+11
Sulfate	83.9	8888.0	mg/L	mg	2.15E+13	3.37E+11	2.03E+11	1.25E+13	2.70E+11	1.93E+11	1.70E+13	3.04E+11	1.98E+11
Total Desolved Solids	498	19242	mg/L	mg	1.27E+14	1.33E+12	5.38E+11	7.33E+13	9.34E+11	4.76E+11	1.00E+14	1.14E+12	5.07E+11
Zinc	0.059	22.905	mg/L	mg	1.55E+10	5.68E+08	4.74E+08	9.10E+09	5.21E+08	4.67E+08	4.60E+12	5 45F+08	4 70F+08

			Inputs and		ults of Mas	Results of Mass Balance/Mixing Modeling	Wixing Moc	Jeling					
						(The L	NEWS and S	IWS Data do	not contain	The LNEWS and SIWS Data do not contain leach field effluent.)	ffluent.)		
	Assumed Concentration in	Average Concentration in Leach Pad	Units	Units	Eure	Eureka (Rainfall 0.92')).92")	Little Sa	Little Sahara (Rainfall 0.53')	ılı 0.53")	Avera	Average (Rainfall 0.73')).73")
	(from Table 3)	Effluent (from Appendix C)			LNEWS	MGWS	SIWS	LNEWS	MGWS	SIWS	LNEWS	MGWS	SMIS
				Liters	2.54E+11	1.89E+09	2.91E+08	1.46E+11	1.09E+09	1.68E+08	2.00E+11	1.50E+09	2.30E+08
								Mass of eac	Mass of each Parameter			1	
Alkalinity, as Bicarbonate	137.25	277.75	mg/L	Вш	3.49E+13	2.59E+11	4.00E+10	2.01E+13	1.49E+11	2.30E+10	2.75E+13	2.05E+11	3.15E+10
Alkalinity, as Carbonate	0.75	0	mg/L	mg	1.91E+11	1.42E+09	2.18E+08	1.10E+11	8.15E+08	1.26E+08	1.50E+11	1.12E+09	1.72E+08
Aluminum	0.008	0.000	mg/L	mg	2.03E+09	1.51E+07	2.33E+06	1.17E+09	8.70E+06	1.34E+06	1.60E+09	1.20E+07	1.84E+06
Arsenic	0.005	19.36	mg/L	mg	1.27E+09	9.43E+06	1.46E+06	7.32E+08	5.43E+06	8.39E+05	1.00E+09	7.49E+06	1.15E+06
Barium	0.065	0.056	mg/L	шĝ	1.65E+10	1.23E+08	1.89E+07	9.52E+09	7.06E+07	1.09E+07	1.30E+10	9.73E+07	1.49E+07
Cadmium	0.002	0.0269	mg/L	шg	5.08E+08	3.77E+06	5.83E+05	2.93E+08	2.17E+06	3.36E+05	4.01E+08	2.99E+06	4.59E+05
Calcinm	55.8	474.0	mg/L	mg	1.42E+13	1.05E+11	1.63E+10	8.17E+12	6.06E+10	9.36E+09	1.12E+13	8.35E+10	1.28E+10
Carbon Dioxide	0.3	0.0	mg/L	вш	7.63E+10	5.66E+08	8.74E+07	4.39E+10	3.26E+08	5.03E+07	6.01E+10	4.49E+08	6.89E+07
Chloride	133	2220	mg/L	mg	3.38E+13	2.51E+11	3.87E+10	1.95E+13	1.45E+11	2.23E+10	2.66E+13	1.99E+11	3.05E+10
Chromium	0.005	0.027	mg/L	mg	1.27E+09	9.43E+06	1.46E+06	7.32E+08	5.43E+06	8.39E+05	1.00E+09	7.49E+06	1.15E+06
Copper	0.01	26.31	mg/L	вш	2.54E+09	1.89E+07	2.91E+06	1.46E+09	1.09E+07	1.68E+06	2.00E+09	1.50E+07	2.30E+06
Cyanide Total	0.004	32.22	mg/L	mg	1.02E+09	7.55E+06	1.17E+06	5.86E+08	4.35E+06	6.71E+05	8.01E+08	5.99E+06	9.18E+05
Cyanide WAD	0	19.6	mg/L	mg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fluoride	0.2	3.0	mg/L	mg	5.08E+10	3.77E+08	5.83E+07	2.93E+10	2.17E+08	3.36E+07	4.01E+10	2.99E+08	4.59E+07
Hydroxide	0.25	0.00	mg/L	mg	6.35E+10	4.72E+08	7.28E+07	3.66E+10	2.72E+08	4.20E+07	5.01E+10	3.74E+08	5.74E+07
Iron	0.17	0.00	mg/L	ВШ	4.32E+10	3.21E+08	4.95E+07	2.49E+10	1.85E+08	2.85E+07	3.41E+10	2.55E+08	3.90E+07
Lead	0.013	0.158	mg/L	mg	3.30E+09	2.45E+07	3.79E+06	1.90E+09	1.41E+07	2.18E+06	2.60E+09	1.95E+07	2.98E+06
Magnesium	30.8	14.26	mg/L	шĝ	7.83E+12	5.81E+10	8.97E+09	4.51E+12	3.35E+10	5.17E+09	6.17E+12	4.61E+10	7.07E+09
Manganese	0.009	0.107	mg/L	шĝ	2.29E+09	1.70E+07	2.62E+06	1.32E+09	9.78E+06	1.51E+06	1.80E+09	1.35E+07	2.07E+06
Mercury	0.0002	0.0998	mg/L	шg	5.08E+07	3.77E+05	5.83E+04	2.93E+07	2.17E+05	3.36E+04	4.01E+07	2.99E+05	4.59E+04
Nitrite, Nitrogen	0.004	13.775	mg/L	mg	1.02E+09	7.55E+06	1.17E+06	5.86E+08	4.35E+06	6.71E+05	8.01E+08	5.99E+06	9.18E+05
Nitrate+Nitrite-Total	1.01	595.93	mg/L	mg	2.57E+11	1.91E+09	2.94E+08	1.48E+11	1.10E+09	1.70E+08	2.02E+11	1.51E+09	2.32E+08
Potassium	3.37	316.00	mg/L	mg	8.57E+11	6.36E+09	9.82E+08	4.93E+11	3.66E+09	5.66E+08	6.75E+11	5.05E+09	7.74E+08
Selenium	0.0029	0.1337	mg/L	БШ	7.37E+08	5.47E+06	8.45E+05	4.25E+08	3.15E+06	4.87E+05	5.81E+08	4.34E+06	6.66E+05
Silver	0.0144	0.2034	mg/L	mg	3.66E+09	2.72E+07	4.19E+06	2.11E+09	1.57E+07	2.42E+06	2.88E+09	2.16E+07	3.31E+06
Sodium	57.7	5845.0	mg/L	ш	1.47E+13	1.09E+11	1.68E+10	8.45E+12	6.27E+10	9.68E+09	1.16E+13	8.64E+10	1.32E+10
Sulfate	83.9	8888.0	mg/L	ш	2.13E+13	1.58E+11	2.44E+10	1.23E+13	9.12E+10	1.41E+10	1.68E+13	1.26E+11	1.93E+10
Total Desolved Solids	498	19242	mg/L	шg	1.27E+14	9.40E+11	1.45E+11	7.29E+13	5.41E+11	8.36E+10	9.98E+13	7.46E+11	1.14E+11
Zinc	0.059	22.905	mg/L	mg	1.50E+10	1.11E+08	1.72E+07	8.64E+09	6.41E+07	9.90E+06	1.18E+10	8.83E+07	1.35E+07

			Inputs and		ilts of Mas	Results of Mass Balance/Mixing Modeling	Mixing Mod	deling					
						E	ne LNEWS ar	(The LNEWS and SIWS Data contain leach field effluent.)	a contain lea	ch field efflu	ent.)		
	Assumed Concentration in	Average Concentration in Leach Pad	Units	Units	Eure	Eureka (Rainfall 0.92')).92")	Little Sz	Little Sahara (Rainfall 0.53')	ıll 0.53')	Avera	Average (Rainfall 0.73')	.73")
	Recharge Water (from Table 3)	Effluent (from Appendix C)			LNEWS	MGWS	SIWS	LNEWS	MGWS	SIWS	LNEWS	MGWS	SIWS
				Liters	2.54E+11	1.91E+09	3.11E+08	1.46E+11	1.11E+09	1.88E+08	2.00E+11	1.52E+09	2.49E+08
							Con	Concentrations	of each Parameter	meter			
Alkalinity, as Bicarbonate	137.25	277.75	mg/L	mg/L	137.27	139.74	155.01	137.29	141.52	166.69	137.28	140.38	159.40
Alkalinity, as Carbonate	0.75	0	mg/L	mg/L	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Aluminum	0.008	0.000	mg/L	mg/L	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Arsenic	0.005	19.36	mg/L	mg/L	0.01	0.18	1.24	0.01	0:30	2.06	0.01	0.22	1.55
Barium	0.065	0.056	mg/L	mg/L	0.07	0.07	0.07	0.07	0.07	0.02	0.07	0.07	0.07
Cadmium	0.002	0.0269	mg/L	mg/L	0.00	0.00	00:00	0.00	0.00	00.00	0.00	0.00	0.00
Calcium	55.8	474.0	mg/L	mg/L	55.84	60.05	86.10	55.86	63.09	106.04	55.85	61.14	93.60
Carbon Dioxide	0.3	0.0	mg/L	mg/L	0.30	0.30	0.30	0:30	0:30	0:30	0:30	0:30	0.30
Chloride	133	2220	mg/L	mg/L	133.17	152.91	274.93	133.30	167.12	368.29	133.22	158.00	310.06
Chromium	0.005	0.027	mg/L	mg/L	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Copper	0.01	26.31	mg/L	mg/L	0.01	0.25	1.69	0.01	0.41	2.80	0.01	0.31	2.11
Cyanide Total	0.004	32.22	mg/L	mg/L	0.01	0.29	2.06	0.01	0.50	3.42	0.01	0.37	2.57
Cyanide WAD	0	19.6	mg/L	mg/L	00.0	0.18	1.25	00.00	0:30	2.08	00.0	0.22	1.56
Fluoride	0.2	3.0	mg/L	mg/L	0.20	0.23	0.39	0.20	0.25	0.52	0.20	0.23	0.44
Hydroxide	0.25	0.00	mg/L	mg/L	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Iron	0.17	0.00	mg/L	mg/L	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Lead	0.013	0.158	mg/L	mg/L	0.01	0.01	0.05	0.01	0.02	0.03	0.01	0.01	0.03
Magnesium	30.8	14.26	mg/L	mg/L	30.80	30.93	31.71	30.80	31.02	32.31	30.80	30.96	31.94
Manganese	0.009	0.107	mg/L	mg/L	0.01	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.02
Mercury	0.0002	0.0998	mg/L	mg/L	0.00	00.00	0.01	0.00	0.00	0.01	0.00	0.00	0.01
Nitrite, Nitrogen	0.004	13.775	mg/L	mg/L	0.01	0.13	0.88	0.01	0.22	1.46	0.01	0.16	1.10
Nitrate+Nitrite-Total	1.01	595.93	mg/L	mg/L	1.06	6.36	39.11	1.09	10.17	64.17	1.07	7.72	48.54
Potassium	3.37	316.00	mg/L	mg/L	3.39	6.20	23.57	3.41	8.23	36.86	3.40	6.93	28.57
Selenium	0.0029	0.1337	mg/L	mg/L	0.00	0.00	0.01	0.00	0.00	0.02	0.00	0.00	0.01
Silver	0.0144	0.2034	mg/L	mg/l.	0.01	0.02	0.03	0.01	0.02	0.04	0.01	0.02	0.03
Sodium	57.7	5845.0	mg/L	mg/L	58.16	110.13	431.38	58.49	147.53	677.20	58.28	123.53	523.87
Sulfate	83.9	8888.0	mg/L	mg/L	84.60	163.63	652.12	85.11	220.50	1025.93	84.78	184.00	792.76
Total Desolved Solids	498	19242	mg/L	mg/L	499.51	670.61	1728.16	500.61	793.74	2537.43	499.91	714.72	2032.64
Zinc	0.059	22.905	mg/L	mg/L	90.0	0.26	1.52	90.0	0.41	2.49	90.0	0.32	1.89
19896124 34													

19896124.34

Mining Mine Permit Number Mo230007 Mine Name north Lily - Tintic Project Operator North Lilly Mining Co. Date 12-1-2000 TO Don Ostler, Director FROM Robert J. Bayer CONFIDENTIAL BOND CLOSURE LARGE MAPS XEXPANDABLE MULTIPUL DOCUMENT TRACKING SHEET __NEW APPROVED NOI _AMENDMENT OTHER YEAR-Record Number Description V Incoming Outgoing Internal Superceded NOI Incoming Outgoing Internal Superceded **NOI** NOI Incoming Outgoing Internal Superceded NOI Incoming Outgoing Internal Superceded TEXT/ 81/2 X 11 MAP PAGES 11 X 17 MAPS LARGE MAP COMMENTS: CC:

This page is a reference page used to track documents internally for the Division of Oil, Gas and